

SEMESTER 1

MAT 101	LINEAR ALGEBRA AND CALCULUS
CO	Statements
1	Solve systems of linear equations, diagonalize matrices and quadratic forms
2	Apply partial derivatives in extreme value problem and local linear approximations
3	Apply multiple integrals in areas and volumes of geometrical shapes, mass and centre of gravity of plane laminas
4	Explain the convergence of infinite series
5	Determine the power series expansion of a given function.

CYT100	ENGINEERING CHEMISTRY
CO	Statements
1	Describe the basic concepts of electrochemistry and corrosion to explore its possible applications in various engineering fields
2	Interpret the spectral data from spectroscopic techniques like UV-Visible, IR, NMR and its applications or predict the Spectral data of a given structure.
3	Outline the principle, classification, instrumentation, procedure and applications of TGA, DTA, Column Chromatography, TLC, Gas Chromatography, HPLC.
4	Explain the basics of stereochemistry, its application and structure properties application of polymers (Kevlar and ABS plastics)
5	Discuss the quality of water (based on hardness, DO) and water treatment methods (sewage and municipal) to develop skills for treating wastewater.

EST100	ENGINEERING MECHANICS
CO	Statements
1	Recall principles and theorems related to rigid body mechanics
2	Describe the components of system of forces acting on the rigid body
3	Apply the conditions of equilibrium to various practical problems involving different force system.
4	solve problems of mechanics by choosing appropriate theorems, principles or formulae.
5	Solve problems involving rigid bodies, applying the properties of distributed areas and masses

EST 120	BASICS OF CIVIL & MECHANICAL ENGINEERING
CO	Statements
1	Recall the role of civil engineer in society and to relate the various disciplines of civil engineering
2	Explain different types of buildings, building components, building materials and building construction
3	Describe the importance, objectives and principles of surveying
4	Summarise the basic infrastructure services MEP, HVAC, elevators, escalators and ramps
5	Discuss the materials, energy systems, water management and environment for green buildings
6	Illustrate thermodynamic cycles and calculate its efficiency
7	Summarize the working and features of IC Engines
8	Explain the basic principles of Refrigeration and Air Conditioning
9	Summarize the working of Hydraulic turbines and pumps
10	Outline the working of power transmission elements
11	Summarize the basic manufacturing, metal joining and machining processes

HUN101	LIFE SKILLS
CO	Statements
1	Outline different life skills required in personal and professional life.
2	Develop an awareness of the self and apply well defined techniques to cope with emotions and stress.
3	Explain the basic mechanics of effective communication and demonstrate these through presentations.
4	Take part in group discussions.
5	Make use of appropriate thinking and problem solving techniques to solve new problems
6	Demonstrate the basics of team work and leadership.

CYL120	ENGINEERING CHEMISTRY LAB
CO	Statements
1	Synthesize of UF resin and PF resin
2	Interpret the IR spectra and NMR spectra of simple organic compounds
3	Estimate the Water Quality parameters (Hardness, DO, pH, Conductivity, Fe content)

ESL120 CIVIL & MECHANICAL WORKSHOP	
CO	Statements
1	Name the different tools and devices used for civil engineering measurements and explain the uses.
2	Demonstrate the steps involved in basic civil engineering activities of setting and operation, plot measurement and levelling
3	Choose the methods and materials required for basic civil engineering activities of masonry work and plumbing
4	Identify Basic mechanical workshop operations in accordance with the material and objects.
5	Apply appropriate tools and instruments with respect to the mechanical workshop trades
6	Apply appropriate safety measures with respect to mechanical workshop trades.

SEMESTER 2

MAT 102	VECTOR CALCULUS, DIFFERENTIAL EQUATIONS AND TRANSFORMS
CO	Statements
1	Explain the theory of derivatives and integrals of vector valued functions.
2	Apply calculus of vector valued functions in the evaluation of integrals, surface integrals and volume integrals.
3	Solve the homogeneous and non homogeneous linear ODE with constant coefficient.
4	Explain the concept of Laplace transforms and Fourier transforms.
5	Solve ODE using Laplace transforms.

EST102	PROGRAMMING IN C
CO	Statements
1	Analyze a computational problem and develop an algorithm/flowchart to find its solution
2	Develop readable* C programs with branching and looping statements, which uses Arithmetic, Logical, Relational or Bitwise operators.
3	Write readable C programs with arrays, structure or union for storing the the data to be processed
4	Divide a given computational problem into a number of modules and develop a readable multi-function C program by using recursion if required, to find the solution to the computational problem
5	Write readable C programs which use pointers for array processing and parameter passing
6	Develop readable C programs with files for reading input and storing output

PHT100	ENGINEERING PHYSICS
CO	Statements
1	Describe the characteristics of different types of oscillations and waves in engineering systems.
2	Apply the cosine law of thin film interference to wedge shaped films and diffraction phenomena in gratings
3	Explain the behavior of matter in atomic level through the principle of quantum mechanics and the basic concept of nanoscience and technology.
4	Derive Maxwell's equation using vector calculus for static, magnetic field
5	Describe the phenomenon of superconductivity, the basics of solidstate lighting devices and fibre optic communication systems.

EST110 ENGINEERING GRAPHICS	
CO	Statements
1	Solve projection of lines inclined to one of the reference planes, true length and traces
2	Construct Orthographic Projections of Solids with axis inclined to both the reference planes and orthographic view of combination of solids
3	Develop sections of solids with inclined plane and development of solids
4	Construct isometric views of solids and perspective projection of solids
5	Construct orthographic view of objects from given 3D view
6	Model 2D and 3D objects using software

EST 130 BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING	
CO	Statements
1	Solve resistive networks by Mesh current and node voltage method
2	Solve magnetic circuits using Faradays law and Ampere circuital law
3	Solve simple AC circuits in steady state condition
4	Describe the working of a voltage amplifier
5	Outline the principle of an electronic instrumentation system
6	Explain the principle of radio and cellular communication

HUN102 PROFESSIONAL COMMUNICATION	
CO	Statements
1	Develop vocabulary and language skills relevant to engineering as a profession
2	Analyze, interpret and effectively summarize a variety of textual content
3	Create effective technical presentations
4	Discuss a given technical/non-technical topic in a group setting and arrive at generalizations/consensus
5	Identify drawbacks in listening patterns and apply listening techniques for specific needs
6	Create professional and technical documents that are clear and adhering to all the necessary conventions

PHL120		ENGINEERING PHYSICS LAB
CO	Statements	
1	Apply cosine law in understanding the interference from thin films with Airwedge and Newton's ring setup.	
2	Interpret the V-I relation in solar cell, the strain-voltage relation in strain gauge, (m/l ²)relation in melde's arrangement for trans & longi. waves, analysing signal voltage and frequency using CRO.	
3	Illustrate the phenomenon of diffraction through transmission grating-using spectrometer and find the dispersive power and resolving power of grating	

ESL130		ELECTRICAL & ELECTRONICS WORKSHOP
CO	Statements	
1	Demonstrate safety measures against electric shocks	
2	Identify the tools used for electrical wiring, accessories,wires,cables,batteries and standard symbols	
3	Develop the connection diagram,identify the suitable accessories and materials necessary for wiring simple lighting circuits for domestic buildings	
4	Identify and test various electronic components	
5	Assemble and test electronic circuits on boards	
6	Familiarize various equipment in electronic laboratories	

SEMESTER 3

MAT 201	Partial Differential Equation and Complex Analysis
CO	Statements
1	Solve PDE by different methods
2	Solve one dimensional wave equation and heat equation.
3	Explain the concept of analytic function and its properties.
4	Explain the concept of power series and singularities of analytic function.
5	Evaluation of line integrals of complex functions by different methods.

ECT201	Solid State Devices
CO	Statements
1	Calculate carrier concentration in semiconductors
2	Identify the excess carriers in semiconductors and carrier transport in semiconductors
3	Calculate terminal currents in PN junctions and bipolar junction transistors
4	Explain MOSFET characteristics
5	Describe MOSFET scaling techniques and identify the short channel effects

ECT203	Logic Circuit Design
CO	Statements
1	Explain the elements of digital system abstractions such as digital representations of information, number systems digital logic and Boolean algebra.
2	Implementation of logic function described by a truth table/ logic functions using basic/universal logic gates and fundamentals of VERILOG modelling.
3	Implementation of combinational logic circuits, arithmetic circuits and their modelling in VERILOG with different levels of abstractions
4	Implementation of sequential logic circuit using the basic building blocks like flip-flops and their modelling in VERILOG with different levels of abstractions.

ECT205	Network Theory
CO	Statements
1	Apply Mesh / Node analysis or Network Theorems to obtain steady state response of the linear time invariant networks.
2	Apply Laplace Transforms to determine the transient behaviour of RLC networks.
3	Apply Network functions and Network Parameters to analyse the single port and two port networks.

HUT200	Professional Ethics
CO	Statements
1	Understand the core values that shape the ethical behaviour of a professional
2	Adopt a good character and follow an ethical life.
3	Explain the role and responsibility in technological development by keeping personal ethics and legal ethics.
4	Solve moral and ethical problems through exploration and assessment by established experiments.
5	Apply the knowledge of human values and social values to contemporary ethical values and global issues

MCN201	Sustainable Engineering
CO	Statements
1	Understand the relevance and the concept of sustainability and the global initiatives in this direction
2	Explain the different types of environmental pollution problems and their sustainable solution
3	Discuss the environmental regulations and standards
4	Outline the concepts related to conventional and non-conventional energy
5	Demonstrate the broad perspective of sustainable practices by utilizing engineering knowledge and principles

ECL201	Scientific Computing Lab
CO	Statements
1	Describe the needs and requirements of scientific computing and to familiarize one programming language for scientific computing and data visualization.
2	Approximate an array/matrix with matrix decomposition.
3	Implement numerical integration and differentiation.
4	Solve ordinary differential equations for engineering applications
5	Compute with exported data from instruments
6	Realize how periodic functions are constituted by sinusoids
7	Simulate random processes and understand their statistics.

ECL203 Logic Design Lab	
CO	Statements
1	Design and demonstrate the functioning of combinational/ arithmetic circuits using ICs
2	Design and demonstrate the functioning of sequential circuits using ICs.
3	Apply an industry compatible hardware description language to simulate and implement digital circuits on FPGA

SEMESTER 4

MAT204	Probability, Random Process and Numerical Methods
CO	Statements
1	Explain discrete and continuous RV and different distributions
2	Apply the density function of the distribution to find the probability of the R.V.
3	Understand random processes using autocorrelation ,power sspectrum and poisson process.
4	Evaluate definite integrals and perform interpolation on given numerical data by standard numerical techniques.
5	Solve the algebraic equations ,system of linear equations and ODE using numerical methods.

ECT202	Analog Circuits
CO	Statements
1	Determine the component values of analog signal processing circuits using diodes and first order RC circuits
2	Apply small signal models to basic amplifier using BJT and MOSFET
3	Apply the principle of oscillator and regulated power supply circuits

ECT204	Signals and Systems
CO	Statements
1	Apply properties of signals and systems to classify them.
2	Represent signals with the help of series and transforms
3	Describe orthogonality of signals and convolution integral
4	Apply transfer function to compute LTI response to input signals
5	Apply sampling theorem to discretize continuous time signals

ECT206	Computer Architecture and Microcontrollers
CO	Statements
1	Explain the functional units, I/O and memory management w.r.t a typical computer architecture
2	Distinguish between microprocessor and microcontroller
3	Develop simple programs using assembly language programming
4	Interface 8051 microcontroller with peripheral devices using ALP/Embedded C
5	Familiarize system software and Advanced RISC Machine Architecture

EST200	Design and Engineering
CO	Statements
1	Explain the different concepts and principles involved in design engineering
2	Apply design thinking while learning and practicing engineering
3	Develop innovative, reliable, sustainable and economically viable designs incorporating knowledge in engineering

MCN202	Constitution of India
CO	Statements
1	Explain the background of the present constitution of India and features.
2	Utilize the fundamental rights and duties
3	Understand the working of the union executive, parliament and judiciary.
4	Understand the working of the state executive, legislature and judiciary.
5	Utilize the special provisions and statutory institutions.

ECL202	Analog Circuits and Simulation Lab
CO	Statements
1	Design and demonstrate the functioning of basic analog circuits using discrete components.
2	Design and simulate the functioning of basic analog circuits using simulation tools.
3	Function effectively as an individual and in a team to accomplish the given task.

ECL204	Microcontroller Lab
CO	Statements
1	Develop Assembly Language Program for data manipulations
2	Develop Assembly Language Program for Arithmetic/Logic Operations
3	Develop Assembly Language Program for I/O Interface

SEMESTER 5

ECT301	Linear Integrated Circuits
CO	Statements
1	Understand Op Amp fundamentals and differential amplifier configurations
2	Design operational amplifier circuits for various applications
3	Design Oscillators and active filters using opamps
4	Explain the working and applications of timer, VCO and PLL ICs
5	Outline the working of Voltage regulator IC's and Data converters

ECT303	Digital Signal Processing
CO	Statements
1	Analyze signal in transform domain and develop a concept of linear filtering
2	Evaluate DFT and IDFT using FFT algorithms
3	Design digital FIR and IIR filters and draw the different filter structures
4	Understand the concept of multirate signal processing and finite word length effects
5	Understand the concept of digital signal processors

ECT305	Analog and Digital Communication
CO	Statements
1	Explain the existent analog communication systems.
2	Apply the concepts of random processes to LTI systems.
3	Apply waveform coding techniques in digital transmission.
4	Design baseband pulse for ISI free transmission over finite bandwidth channel.
5	Apply digital modulation techniques in signal transmission.

ECT307	Control Systems
CO	Statements
1	Analyze electromechanical system by mathematical modeling and derive their transfer function
2	Determine Transient and steady state behaviour of systems using standard test signals
3	Determine absolute stability and relative stability of a system
4	Apply frequency domain techniques to assess the system performance and to design a control system with suitable compensation techniques
5	Analyze system controllability and observability using state space representation

HUT310	Management For Engineers
CO	Statements
1	Explain the characteristics of management in the contemporary context
2	Describe the functions of management
3	Demonstrate ability in decision making process and productivity analysis
4	Illustrate project management technique and develop a project schedule
5	Summarize the functional areas of management
6	Comprehend the concept of entrepreneurship and create business plans

MCN301	Disaster Management
CO	Statements
1	Define and use various terminologies in use in disaster management , parlance and organise each of these terms in relation to DM cycle
2	Distinguish between hazard types and vulnerability types and do vulnerability assessments
3	Identify the components and describe the process of risk assessment and apply appropriate methodologies assess methodologies to assess risk
4	Explain the core elements and phases of Disaster risk management and develop possible measures to reduce disaster risks across sector and community
5	Identify the factors that determine the nature of disaster response and discuss the varioios disaster response actions
6	Explain the various legislations and best practices for disaster management and risk reduction at national and international level.

ECL331	Analog Integrated Circuits and Simulation Lab
CO	Statements
1	Use data sheets of basic Analog Integrated Circuits and design and implement application circuits using Analog ICs
2	Design and simulate the application circuits with Analog Integrated Circuits using simulation tools
3	Function effectively as an individual and in a team to accomplish the given task

ECL333	Digital Signal Processing Lab
CO	Statements
1	Develop and validate different signal processing systems using Matlab/Scilab
2	Develop and validate different signal processing systems using Python
3	Devise various signal processing applications using DSP kit

SEMESTER 6

ECT302		Electromagnetics
CO	Statements	
1	To summarize the basic mathematical concepts related to electromagnetic vector fields	
2	To analyse Maxwell's equation in different forms and apply them to diverse engineering problems	
3	To analyse electromagnetic wave propagation	
4	To analyse wave polarization and characteristics of transmission lines	
5	To solve the transmission line problems using Smith chart and evaluate the propagation of EM waves in Wave guides	

ECT304		VLSI Circuit Design
CO	Statements	
1	Understand various methodologies in ASIC and FPGA design.	
2	Understand static and dynamic behavior of MOSFET based inverters	
3	Design / Implement static and dynamic logic circuits with various MOSFET logic families	
4	Design and analyze different types of memory and data path elements	
5	Explain logical and physical design processes of integrated circuits.	

ECT306		Information Theory and Coding
CO	Statements	
1	Explain measures of information entropy, conditional entropy, mutual information	
2	Apply Shannon's source coding theorem for data compression.	
3	Apply the concept of channel capacity to characterize limits of error-free transmission.	
4	Apply linear block codes for error detection and correction	
5	Apply algebraic codes with reduced structural complexity for error correction	

HUT300		Industrial Economics and Foreign Trade
CO	Statements	
1	Determine the impact of changes in global economic policies on the business opportunities of a firm	

2	Take appropriate decisions regarding volume of output and to evaluate the social cost of production
3	Determine the functional requirement of a firm under various competitive conditions
4	Examine the overall performance of the economy, and the regulation of economic fluctuations and its impact on various sections in the society
5	Determine the impact of changes in global economic policies on the business opportunities of a firm

ECT308	ComprehensiveCourseWork
CO	Statements
1	Apply the knowledge of circuit theorems and solid state physics to solve the problems in electronic Circuits
2	Design a logic circuit for a specific application
3	Design linear IC circuits for linear and non-linear circuit applications.
4	Explain basic signal processing operations and Filter designs
5	Explain existent analog and digital communication systems

EC332	Communication Lab
CO	Statements
1	Setup simple prototype circuits for waveform coding and digital modulation techniques working in a team.
2	Simulate the error performance of a digital communication system.
3	Develop hands-on skills to emulate a communication system with software-designed-radio working in a team.

ECD334	Mini Project
CO	Statements
1	Apply the knowledge within the selected area of technology for project development
2	Discuss and justify the technical aspects and design aspects of the project with a systematic approach.
3	Design and Reproduce engineering projects.
4	Development of working technical projects.
5	Communicate and report effectively project related activities

SEMESTER 7

ECT 401	Microwaves and Antennas
CO	Statements
1	Understand the basic concept of antennas and its parameters.
2	Analyze the far field pattern of short dipole and Half wave dipole antenna
3	Design of various broad band antennas, arrays and its radiation patterns
4	Illustrate the principle of operation of cavity resonators and various microwave sources
5	Explain various microwave hybrid circuits and microwave semiconductor devices

MCN401	Industrial Safety Engineering
CO	Statements
1	Describe the theories of accident causation and preventive measures of industrial accidents.
2	Explain about personal protective equipment, its selection, safety performance & indicators and importance of housekeeping.
3	Explain different issues in construction industries.
4	Describe various hazards associated with different machines and mechanical material handling.
5	Utilise different hazard identification tools in different industries with the knowledge of different types of chemical hazards.

ECL 411	Electromagnetics Lab
CO	Statements
1	Familiarize the basic Microwave components and to analyse few microwave measurements and its parameters.
2	Understand the principles of fiber-optic communications and the different kind of losses, signal distortion and other signal degradation factors.
3	Design and simulate basic antenna experiments with simulation tools.

ECQ 413	Seminar
CO	Statements
1	Identify academic documents from the literature which are related to her/his areas of interest
2	Read and apprehend an academic document from the literature which is related to her/ his areas of interest
3	Prepare a presentation about an academic document

4	Give a presentation about an academic document
5	Prepare a technical report
6	Identify academic documents from the literature which are related to her/his areas of interest

ECD 415	Project Phase I
CO	Statements
1	Model and solve real world problems by applying knowledge across domains
2	Develop products, processes or technologies for sustainable and socially relevant applications
3	Function effectively as an individual and as a leader in diverse teams and to comprehend and execute designated tasks
4	Plan and execute tasks utilizing available resources within timelines, following ethical and professional norms
5	Identify technology/research gaps and propose innovative/creative solutions
6	Organize and communicate technical and scientific findings effectively in written and oral forms

SEMESTER 8

ECT 402	Wireless Communication
CO	Statements
1	Summarize the basics of cellular system and cellular design fundamentals
2	Describe the wireless channel models and discuss capacity of wireless channels
3	Analyze the performance of the modulation techniques for flat-fading channels and multicarrier modulation
4	Illustrate how receiver performance can be enhanced by various diversity and equalization techniques
5	Analyze the system parameters such as antenna height, range, maximum usable frequency in different modes of radio wave propagation

ECT 404	Comprehensive Viva Voce
CO	Statements
1	Explain the basic concepts in fundamental core courses in the curriculum.

ECD 416	Project Phase II
CO	Statements
1	Model and solve real world problems by applying knowledge across domains
2	Develop products, processes or technologies for sustainable and socially relevant applications
3	Function effectively as an individual and as a leader in diverse teams and to comprehend and execute designated tasks
4	Plan and execute task utilizing available resources within timelines, following ethical and professional norms
5	Identify technology/research gaps and propose innovative/creative solutions
6	Organize and communicate technical and scientific findings effectively in written and oral forms.