Course code	Course Name	L-T-P - Credits	Year of Introduction
**341	DESIGN PROJECT	0-1-2-2	2016
	Prerequisite : Nil		

Course Objectives

- To understand the engineering aspects of design with reference to simple products
- To foster innovation in design of products, processes or systems
- To develop design that add value to products and solve technical problems

Course Plan

Study : Take minimum three simple products, processes or techniques in the area of specialisation, study, analyse and present them. The analysis shall be focused on functionality, strength, material, manufacture/construction, quality, reliability, aesthetics, ergonomics, safety, maintenance, handling, sustainability, cost etc. whichever are applicable. Each student in the group has to present individually; choosing different products, processes or techniques.

Design: The project team shall identify an innovative product, process or technology and proceed with detailed design. At the end, the team has to document it properly and present and defend it. The design is expected to concentrate on functionality, design for strength is not expected.

Note : The one hour/week allotted for tutorial shall be used for discussions and presentations. The project team (not exceeding four) can be students from different branches, if the design problem is multidisciplinary.

Expected outcome.

The students will be able to

- i. Think innovatively on the development of components, products, processes or technologies in the engineering field
- ii. Analyse the problem requirements and arrive workable design solutions

Ertel

Reference:

Michael Luchs, Scott Swan, Abbie Griffin, 2015. Design Thinking. 405 pages, John Wiley & Sons, Inc

Evaluation

First evaluation (Immediately after first internal examination)20 marksSecond evaluation (Immediately after second internal examination)20 marksFinal evaluation (Last week of the semester)60 marks

Note: All the three evaluations are mandatory for course completion and for awarding the final grade.

Course code	Course Name	L-T-P - Credits	Year of	
			Introduction	
**352	Comprehensive Examination	0-1-1-2	2016	
Prerequisite : Nil				

Course Objectives

- To assess the comprehensive knowledge gained in basic courses relevant to the branch of study
- To comprehend the questions asked and answer them with confidence.

Assessment

Oral examination – To be conducted weekly during the slot allotted for the course in the curriculum (@ three students/hour) – 50 marks

Written examination - To be conducted by the Dept. immediately after the second internal examination– common to all students of the same branch – objective type (1 hour duration)– 50 multiple choice questions (4 choices) of 1 mark each covering all the courses up to and including semester V – no negative marks – 50 marks.

Note: Both oral and written examinations are mandatory. But separate minimum marks is not insisted for pass. If a students does not complete any of the two assessments, grade I shall be awarded and the final grade shall be given only after the completion of both the assessments. The two hours allotted for the course may be used by the students for library reading and for oral assessment.

Expected outcome.

• The students will be confident in discussing the fundamental aspects of any engineering problem/situation and give answers in dealing with them

Course code	Course Name	L-T-P - Credits	Year of Introduction			
**451	Seminar and Project Preliminary	0-1-4-2	2016			
	Prerequisite : N	il				
Course Object	ives					
• To deve	lop skills in doing literature survey, techn	ical presentation and rep	port preparation.			
To enab	ble project identification and execution of	oreliminary works on fi	nal semester			
project		F 1 T 1 I I				
Course Plan		CALAM				
Seminar: Each	student shall identify a topic of current re	elevance in his/her brand	ch of engineering,			
get approval of	f faculty concerned, collect sufficient lite	erature on the topic, stu	dy it thoroughly,			
prepare own re	port and present in the class.	UICAL				
Project prelim	inary:	ITV .				
Identify suitabl	e project relevant to the branch of study.	Form project team (n	ot exceeding four			
students). The	students can do the project individually al	so. Identify a project s	upervisor. Present			
the project pro	oposal before the assessment board (ex	cluding the external e	xpert) and get it			
The preliminar	e board.	(2) Formulation	of objectives (3)			
Formulation of	hypothesis/design/methodology (4) Form	nulation of work plan ((5) Seeking funds			
(6) Preparation	of preliminary report	nulation of work plan	(5) beeking runds			
<i>Note:</i> The same	e project should be continued in the eight	h semester by the same	project team.			
Expected out	come .		FJ			
The students w	ill be able to					
i. Analyse	e a current topic of professional interest an	d present it before an au	idience			
ii. Identify	an engineering problem, analyse it and p	ropose a work plan to se	olve it.			
Evaluation						
Seminar	: 50 marks					
(Distribution of	of marks for the seminar is as follows: i. P	resentation : 40% ii. A	bility to answer			
questions : 30	% & 111. Report : 30%)	1 4 1 4	. 400/ 1			
Project prelim	inary : 50 marks (Progress e	valuation by the superv	1sor : 40% and			
evaluations m	progress evaluation by the assessment board excluding external expert : 60%. Two progress					
	nd semester and end semester, are mandat	01y.)				
Note: All eval	uations are mandatory for course complet	ion and for awarding the	e final grade.			
	2014					
	2014					

Course code	Course N	ame	Credits	Year of Introduction
**492	PRO.IE0	СТ	6	2016
	Pre	requisite : Nil	~	
Course Objec	tives			
• To app	ly engineering knowledge in	practical problem soly	ving	
• To fost	er innovation in design of pro	ducts, processes or sy	ystems	
• To dev	elop creative thinking in findi	ing viable solutions to	engineering pr	oblems
Course Plan	A A A A	KA		
In depth study	of the topic assigned in the	light of the prelimina	ary report prepar	red in the seventh
Review and fir	alization of the approach to t	he problem relating to	o the assigned to	opic
Preparing a det	tailed action plan for conduct	ing the investigation,	including team	work
Detailed Analy	vsis/Modelling/Simulation/De	sign/Problem Solving	g/Experiment as	needed
Final developn	nent of product/process, testin	ng, results, conclusior	ns and future dir	ections
Preparing a pa	per for Conference presentation	on/Publication in Jour	rnals, if possible	,
Preparing a rep	port in the standard format for	being evaluated by t	he dept. assessn	nent board
Final project p	presentation and viva voce by	the assessment board	l including exter	mal expert
Expected out	tcome			
The students w	Think innovatively on the day	alopmant of componen	te producte proc	assas or
111.	technologies in the engineerin	g field	is, producis, proc	5565 01
iv.	Apply knowledge gained in so	olving real life engineer	ing problems	
		C C	01	
Evaluation				
Maximum M	larks : 100			
(i) Two progr	ess assessments	20% by the faculty	y supervisor(s)	
(ii) Final proj	ect report	30% by the assess	ment board	
(111) Project p	resentation and viva voce	50% by the assess	ment board	
Notes All the	three evolutions are mandet	oru for course comple	tion and for any	arding the final
grade	the evaluations are mandate	ory for course comple	and for aw	arung me mai
grade.		ista,	/	
		1014		
		2014		

Course c	ourse code Course Name L-T-P- Year of Credits Introduction				
EE312	2	Electrical and Electronics Engineering	3-0-0)-3	2016
Prerequis	ite : l	Nil			
Course O	bjecti	ive			
• To	give	exposure to the working of Electrical Machines that fu	inction	as prin	me movers in
ind	lustria	ll systems/machine-tools.	A	N.A	
• To	make	e aware on factors affecting the choice of motor for a gi	ven ap	plication	on
• To	intro	duce power electronics which form the essential part of	mode	rn driv	es
Syllabus					
1 ransform	lers, II	nduction motors, Direct current machines, Control syste	em mo	tors, Fa	actors
Exported	ne cho	ome	-		
The studer	ote wi	ll be able to			
i kno	ow ah	out electrical machines that form part of various indust	rial sv	stems	
ii. uno	dersta	nd the working of electric machine driven industrial s	vstem	s and r	nachine tools
ina	a bette	er way.	J		
Text Book	K:				
Hu	ighes,	Edward, et al. "Hughes electrical and electronic technology	ology'	'. Pears	son
edu	ucatio	n, 2008.			
Reference	es:				
	C	"harles A "Electric muchines" CBC mass 2006			
1. Gr	OSS, C thougt	hill locarb "Power electronics principles and application	tions"	Toto N	AcCrow Hill
Z. VII	mayai	nn, Joseph. Fower electronics principles and application 1995	ions .	T ata N	
2 Ve	nkata	ratnam K "Special electrical machines" Universities	Press	2009	
4. Mc	ohan.	Ned. and Tore M. Undeland. "Power electronics: conv	erters.	applic	ations. and
des	sign".	John Wiley & Sons, 2007.	,		
5. Gu	ıru, Bl	hag S., and Hüseyin R. Hiziroglu. "Electric machinery	and tre	ansform	ners",
Ox	ford l	University Press, 2001.		Ū	
	-	Course Plan			
		Estd.			End Sem.
Module		Contents		Hours	exam
					marks
	Tron	oformore Operating principle ideal and prov	otical		
	trans	formers EME equation No load phasor diag	ram		
	equi	valent circuit phasor diagram of a transformer on	load		
Ι	App	roximate equivalent circuit of transformer and	its	9	15%
	sim	blification. Voltage regulation. efficiency, condition	for		
	max	imum efficiency, transformer tests.	_		
	Thre	e phase Induction motors- principle of action, frequen	cy of		
	roto	emf and current. Factors determining the torque. To	rque-	-	
Ш	slip	curve, comparison of slip ring and cage rotors.		6	15%
	Sing	the phase induction motors-capacitor run induction m	lotor,		
	spiit	First Internal From			
First Internal Exam					

III	Direct current machines-general arrangement of a dc machine, calculation of e.m.f. generated in an armature winding, armature reaction, commutation. Armature and field connections. A dc machine as generator or motor. Speed of a motor, speed characteristics of shunt, series and compound motors. Torque characteristics of shunt, series and compound motors.	8	15%
IV	Control system motors-Motors for regulators, RPC system requirements, Geneva cam, stepper motor, variable reluctance motor, hybrid stepping motor, drive circuits.	6	15%
	Second Internal Exam		
V	Motor selection-Factors affecting the selection motors-speed, power rating and duty cycles, load torques. The motor and its environment.	4	20%
VI	Power electronics- introduction to power electronics, thyristor circuits, limitations to thyristor operation, thyristors in practice, The fully controlled a.c./d.c. converter, ac/dc inversion. Switching devices in inverters.	9	20%
End Semester Exam			

Maximum marks: 100

Time: 3 hours

The question paper shall consist of three parts

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: In all parts, each question can have a maximum of four sub questions, if needed.

014

Course	Course Name	L-T-P-	Year of		
	Electrical and Electronics Engineering Lab				
EE330 Dronoquisito	• EE212 Electrical and electronics engineering Lab	0-0-3-1	2010		
Course Obio					
Course Obje	cuve		· 1 1		
• Io pr	ovide necessary practical knowledge related to the th	eory of elect	rical machines		
such a	is transformers, induction machines and de machines.	LAIV	1		
• To stu	dy the characteristics of normal diodes and Zener diode	S			
• To fa	miliarize with various instruments like CRO, multi-n	neters etc. us	ed to measure		
electri	cal quantities.	Q7 11			
To do	a simple project which can be performed in groups is g	ven.			
	UNIVERDE	1			
List of Expe	riments				
1 0 1					
I. Single	phase transformer – load test	<u> </u>			
2. Single	phase transformer-OC and SC test- determination	of approxim	ate equivalent		
circui	s-pre-determination of efficiency and regulation.	6			
3. Starti	ng of three phase induction motor using different kinds	of starters (sq	uirrel cage and		
slip ri	ng)-observation of currents and voltages.				
4. Load	test on three phase squirrel cage /slip ring induction mot	ors.			
5. DC s	nunt generator magnetization characteristics plot (det	ermination c	f critical field		
resista	ince and critical speed).				
6. DC sh	unt generator load test.	D.			
7. DC cc	ompound generator load test (cumulative and differentia	l).			
8. Obser	vation of diode characteristics on CRO.				
9. Zener	diode characteristics.	1.			
10. Proje	ct : The students can do a project related to designing	ng a timer us	sing IC 555 to		
under	stand the application of such timer ICs. The timer shou	d be able to	keep a light on		
for a g	for a given period. They can do the project in groups. Any other interesting project using				
IC 55.	b can also be tried.				
	Estd.	7			
	Expected outcome:				
The students	will be able to				
	nderstand the principles of electrical machines	IDC			
11. Do	characteristic tests on transformers, induction motors a	ind DC gener	ators		
111. Vi	sualise diode characteristics on CRO				
iv. Ex	secute simple projects using IC 555				

Course code	Course Name	L-T-P- Credits	Year of Introduction
ME304	DYNAMICS OF MACHINERY	2-1-0-3	2016
Prerequisite: N	IE301 Mechanics of Machinery	A A	4
Course Object • To rec • To fre • To con	tives: impart knowledge on force analysis of machinery, be iprocating masses, Gyroscopes, Energy fluctuation in Machi introduce the fundamentals in vibration, vibration anal edom systems. understand the physical significance and design of vibration inditions	alancing of nes. ysis of sin tion system	rotating and gle degree of s with desired
Syllabus Force analysi Flywheel anal Vibrations – t vibration.	s of machinery - static and dynamic force analysis of ysis - static and dynamic balancing - balancing of rotating free vibrations of single degree freedom systems, damping	plane moti masses, gyr g, forced vib	on mechanisms. oscopic couples. oration, torsional
Expected out The students v 1. Develop t 2. Understar mechanis	come: vill be able to he design and practical problem solving skills in the are ad the basics of vibration and apply the concepts ms.	a of mecha in design	nisms 1 problems of
Text Books: 1. Ba 2. S. 3. V.	allaney P.L. Theory of Machines, Khanna Publishers,1994 S. Rattan, Theory of Machines, Tata McGraw Hill, 2009 P. Singh, Theory of Machines, Dhanpat Rai,2013)	
References : 1. E. 2. GI 20 3. 3. H. 4e 4. 4. He 5. J. 6. W	Wilson, P. Sadler, Kinematics and Dynamics of Machinery, nosh, A. K. Malik, Theory of Mechanisms and Machines, Af 03 Myskza, Machines and Mechanisms Applied Kinematic An , 2012 olowenko, Dynamics of Machinery, John Wiley, 1995 E. Shigley, J. J. Uicker, Theory of Machines and Mechanism .T.Thompson, Theory of vibration, Prentice Hall,1997	Pearson Ed filiated East alysis, Pears ns, McGraw	ucation, 2003 West Press, son Education, Hill,1995

	Course Plan		
Module	Contents	Hours	End Sem. Exam
	API ABDUL KALA	M	Marks
I	Introduction to force analysis in mechanisms - static force analysis (four bar linkages only) - graphical methods	4	15%
1	Matrix methods - method of virtual work - analysis with sliding and pin friction	3	1570
II	Dynamic force analysis: Inertia force and inertia torque. D'Alemberts principle, analysis of mechanisms (four bar linkages only), equivalent dynamical systems	4	15%
	Force Analysis of spur- helical - bevel and worm gearing	3	
	FIRST INTERNAL EXAM		
TT	Flywheel analysis - balancing - static and dynamic balancing - balancing of masses rotating in several planes	4	150/
111	Balancing of reciprocating masses - balancing of multi-cylinder in line engines - V engines - balancing of machines	3	15%
	Gyroscope – gyroscopic couples	3	
IV	Gyroscopic action on vehicles-two wheelers, four wheelers, air planes and ships. Stability of an automobile – stability of a two wheel vehicle –Stabilization of ship.	4	15%
	SECOND INTERNAL EXAM		
	Introduction to vibrations – free vibrations of single degree freedom systems – energy Method	2	
V	Undamped and damped free vibrations – viscous damping – critical damping - logarithmic decrement - Coulomb damping – harmonically excited vibrations	3	20%
	Response of an undamped and damped system – beat phenomenon - transmissibility	2	
VI	Whirling of shafts – critical speed - free torsional vibrations – self excitation and stability analysis - vibration control - vibration isolation – vibration absorbers	4	20%
	Introduction to multi-degree freedom systems - vibration measurement - accelerometer - seismometer - vibration exciters	3	
	END SEMESTER EXAM		

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

-51

Course code	Course Name	L-T-P- Credits	Year of Introduction
ME304	DYNAMICS OF MACHINERY	2-1-0-3	2016
Prerequisite: N	IE301 Mechanics of Machinery	A A	4
Course Object • To rec • To fre • To con	tives: impart knowledge on force analysis of machinery, be iprocating masses, Gyroscopes, Energy fluctuation in Machi introduce the fundamentals in vibration, vibration anal edom systems. understand the physical significance and design of vibration inditions	alancing of nes. ysis of sin tion system	rotating and gle degree of s with desired
Syllabus Force analysi Flywheel anal Vibrations – t vibration.	s of machinery - static and dynamic force analysis of ysis - static and dynamic balancing - balancing of rotating free vibrations of single degree freedom systems, damping	plane moti masses, gyr g, forced vib	on mechanisms. oscopic couples. oration, torsional
Expected out The students v 1. Develop t 2. Understar mechanis	come: vill be able to he design and practical problem solving skills in the are ad the basics of vibration and apply the concepts ms.	a of mecha in design	nisms 1 problems of
Text Books: 1. Ba 2. S. 3. V.	allaney P.L. Theory of Machines, Khanna Publishers,1994 S. Rattan, Theory of Machines, Tata McGraw Hill, 2009 P. Singh, Theory of Machines, Dhanpat Rai,2013)	
References : 1. E. 2. GI 20 3. 3. H. 4e 4. 4. He 5. J. 6. W	Wilson, P. Sadler, Kinematics and Dynamics of Machinery, nosh, A. K. Malik, Theory of Mechanisms and Machines, Af 03 Myskza, Machines and Mechanisms Applied Kinematic An , 2012 olowenko, Dynamics of Machinery, John Wiley, 1995 E. Shigley, J. J. Uicker, Theory of Machines and Mechanism .T.Thompson, Theory of vibration, Prentice Hall,1997	Pearson Ed filiated East alysis, Pears ns, McGraw	ucation, 2003 West Press, son Education, Hill,1995

	Course Plan		
Module	Contents	Hours	End Sem. Exam
	API ABDUL KALA	M	Marks
I	Introduction to force analysis in mechanisms - static force analysis (four bar linkages only) - graphical methods	4	15%
1	Matrix methods - method of virtual work - analysis with sliding and pin friction	3	1570
II	Dynamic force analysis: Inertia force and inertia torque. D'Alemberts principle, analysis of mechanisms (four bar linkages only), equivalent dynamical systems	4	15%
	Force Analysis of spur- helical - bevel and worm gearing	3	
	FIRST INTERNAL EXAM		
TT	Flywheel analysis - balancing - static and dynamic balancing - balancing of masses rotating in several planes	4	150/
111	Balancing of reciprocating masses - balancing of multi-cylinder in line engines - V engines - balancing of machines	3	15%
	Gyroscope – gyroscopic couples	3	
IV	Gyroscopic action on vehicles-two wheelers, four wheelers, air planes and ships. Stability of an automobile – stability of a two wheel vehicle –Stabilization of ship.	4	15%
	SECOND INTERNAL EXAM		
	Introduction to vibrations – free vibrations of single degree freedom systems – energy Method	2	
V	Undamped and damped free vibrations – viscous damping – critical damping - logarithmic decrement - Coulomb damping – harmonically excited vibrations	3	20%
	Response of an undamped and damped system – beat phenomenon - transmissibility	2	
VI	Whirling of shafts – critical speed - free torsional vibrations – self excitation and stability analysis - vibration control - vibration isolation – vibration absorbers	4	20%
	Introduction to multi-degree freedom systems - vibration measurement - accelerometer - seismometer - vibration exciters	3	
	END SEMESTER EXAM		

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

-51

Course code	Course Name	L-T-P- Credits	Year of Introduction
ME308	COMPUTER AIDED DESIGN AND ANALYSIS	3-0-0-3	2016
Prerequisite: N	IE201 Mechanics of solids	IAN	A
Course Object 1. To impart 2. To introdu 3. To introdu Syllabus Introduction to	tives: basic knowledge on Computer Aided Design metho ice the fundamentals of solid modelling ice the concepts of finite element analysis procedure o CAD/CAM, Basics of geometric and solid modelin	ds and proced es. ng, transformat	ures
points, lines, s interpolation, i	surfaces and solid models. Introduction to finite eleme soparametric formulation, applications.	ent analysis, so	olution procedures
Expected out The students w 1. Gain a bas 2. Understan 3. Have a ba	come: vill be able to sic knowledge on Computer Aided Design methods a d the fundamentals of solid modelling sic knowledge in finite element analysis procedures	and procedure	s
 Text Books: M.P. Groc Prentice H. T. R. Char Education 	over, E.M. Zimmers, Jr.CAD/CAM; Computer Aided De all of India, 1987 adrupatla and A. D. Belagundu, Introduction to Finite E 2001	esign and Manu lements in Eng	ifacturing, ineering, Pearson
 References: Chris Mcr Manageme D. F. Rog Hill,1990 Daryl Loga Daryl Loga David V H Donald He Pearson Ec Grigore Bu Ibrahim Ze P. Radhaku 	nahon and Jimmie Browne - CAD/CAM – Principle ont, Addision Wesley England,1998 gers and J. A. Adams, Mathematical Elements in Co an, A First course in Finite Element Method, Thomson I utton, Fundamentals of Finite Element Analysis, THM,2 earn, M. Pauline Baker and Warren Carithers, Comp lucation,2001 urdea, Philippe Coiffet, Virtual Reality Technology, John id, CAD/ CAM Theory and Practice, McGraw Hill,2007 ishnan and S. Subramanyan, CAD / CAM / CIM, New 2	e Practice and omputer Graph Learning,2007 2003 uter Graphics n Wiley and so 7 Age Int. Ltd.,20	Manufacturing nics, McGraw- with open GL, ns,2003

Course Plan			
Module	Contents	Hours	End Sem. Exam
	A DI A RIDI II VALA	NA	Marks
	Introduction to CAD, Historical developments, Industrial look at CAD, Comparison of CAD with traditional designing, Application of computers in Design	2	
Ι	Basics of geometric and solid modeling, Packages for CAD/CAM/CAE/CAPP	1	15%
	Hardware in CAD components, user interaction devices, design database, graphic Standards, data Exchange Formats, virtual Reality.	4	
	Transformation of points and line, 2-D rotation, reflection, scaling and combined transformation, homogeneous coordinates, 3-D scaling.	4	
Π	Shearing, rotation, reflection and translation, combined transformations, orthographic and perspective projections, reconstruction of 3-D objects.	3	15%
	FIRST INTERNAL EXAM		
ш	Algebraic and geometric forms, tangents and normal, blending functions, reparametrization, straight lines, conics, cubic splines, Bezier curves and B-spline curves.	4	15%
	Plane surface, ruled surface, surface of revolution, tabulated cylinder, bi- cubic surface, bezier surface, B-spline surfaces and their modeling techniques.	3	
IV	Solid models and representation scheme, boundary representation, constructive solid geometry.	3	15%
	Sweep representation, cell decomposition, spatial occupancy enumeration, coordinate systems for solid modeling.	4	
	SECOND INTERNAL EXAM		
	Introduction to finite element analysis - steps involved in FEM- Preprocessing phase – discretisation - types of elements	2	
V	Formulation of stiffness matrix (direct method, 1-D element) - formulation of load vector - assembly of global equations - implementation of boundary conditions - solution procedure - post processing phase	3	20%
	Simple problems with axial bar element (structural problems only)	2	
VI	Interpolation – selection of interpolation functions - CST element - isoparametric formulation (using minimum PE theorem) – Gauss- quadrature	4	20%

	Solution of 2D plane stress solid mechanics problems (linear static analysis) 3			
END SEMESTER EXAM				
	AD A Poly Paper Pattern A LA			
Maximum	marks: 100 Time: 3 hrs			
The question	on paper should consist of three parts			
Part A	UNIVERSITY			
There shou	ald be 2 questions each from module I and II			
Each quest	tion carries 10 marks			
Students w	vill have to answer any three questions out of $4 (3X10 \text{ marks} = 30 \text{ marks})$			
Part B				
There should be a should be should be should be a should be a should be a should be a shou	ald be 2 questions each from module III and IV			
Each quest	tion carries 10 marks			

Estd

2014

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Course	Course Name	L-T-P-	Year of
code		Credits	Introduction
ME312	METROLOGY AND INSTRUMENTATION	3-0-0-3	2016

Prerequisite: Nil

Course Objectives:

- To understand the working of linear and angular measuring instruments.
- To familiarize with the working of optical measuring instruments and fundamentals of limits and limit gauges.
- To give basic idea about various methods for measurement of screw thread and surface finish parameters.
- To give an exposure to advanced measuring devices and machine tool metrology.
- To provide students an overview of mechanical measurement systems and principle of instruments for motion and dimension measurement.
- To provide basic idea about working principle and applications of devices for measurement of force and torque; strain and stress and temperature.

Syllabus

Introduction to Metrology - Errors in Measurement- Basic standards of length - Linear Measurement, Comparators - Angular Measurement - Limits and Limit gauges - Optical Measuring Instruments - Screw thread measurement - Measurement of surface texture - Machine tool metrology - Coordinate Measuring Machine (CMM) and Machine Vision.

Introduction to Mechanical Measurement - Motion and Dimension measurement, Strain and Stress Measurement - Measurement of Force, Torque and Temperature Measurement.

Expected outcome:

The students will be able to

- i. Understand the working of linear and angular measuring instruments.
- ii. Know the fundamentals of limits and limit gauges, various methods for measurement of screw thread and surface roughness parameters and the working of optical measuring instruments.
- iii. Get an exposure to advanced measuring devices and machine tool metrology.
- iv. Acquire an overview of mechanical measurement systems and principle of instruments for motion and dimension measurement.
- v. Get basic idea about working principle and applications of devices for measurement of force and torque; strain and stress and temperature.

Text books

- 1. Anand K Bewoor, Vinay A Kulkarni, Metrology & Measurement, McGraw-Hill, 2009
- 2. Ernest O. Doebelin, Dhanesh N. Manik, Measurement Systems Application and Design, McGraw-Hill, 2004
- 3. Galyer J.F.W., Schotbolt C.R., Metrology for Engineers, ELBS, 1990
- 4. Thomas G. Beckwith, John H. L., Roy D. M., Mechanical Measurements, 6/E, Pearson Prentice Hall, 2007

Reference books

- 1. ASME, Hand book of Industrial Metrology, 1998
- Hume K. J., Engineering Metrology, Macdonald &Co. Ltd.,1990
 J.P.Holman, Experimental Methods for Engineers, Mcgraw-Hill, 2007
- 4. Sharp K.W.B., Practical Engineering Metrology, Sir Isaac Pitman & Sons Ltd., 1958

Course Plan				
Module	TECHNContents LOGICA	н	ours	End Sem. Exam. Marks
	Concept of measurement:-Introduction to Metrology; Need for high precision measurements; Terminologies in Measurement- Precision, accuracy, sensitivity, calibration.		1	
	Errors in Measurement, types of errors, Abbe's Principle.		1	
I	Basic standards of length- Line standard, End standards, Wavelength standard; Various Shop floor standards.		1	15%
	Linear Measurement – Slip gauges, wringing, grades; Surface plate; Dial indicators; Height gauges and Vernier calipers.		1	
	Comparators- mechanical, electrical, optical and pneumatic.		1	
	Angular Measurement – Bevel protractor; Sine Bar, principle and use of sine bar, sine centre; Angle gauges.		1	
	Sprit level; Angle Dekkor; Clinometers.		1	
	Limits and Limit gauges – Making to suit, selective assembly, systems of limits and fits; Types of fits; Hole basis system and Shaft basis system.		1	
	Standard systems of limits and fits; Shaft and Hole system; Tolerance, allowance and deviation (as per BIS).	7	1	
	Simple problems on tolerance and allowance, shaft and hole system.		1	
	Limit Gauges – GO and NO GO gauges; types of limit gauges.		1	15%
II	Gauge design - Taylor's principle of gauging; Gauge tolerance, disposition of gauge tolerance, wear allowance.		1	
	Optical Measuring Instruments: - Benefits of using light waves as standards; Monochromatic light; Principle of Interference.		1	
	Interference band using optical flat, application in surface measurement.		1	
	Interferometers – NPL flatness interferometer, Pitter-NPL gauge interferometer.		1	
	FIRST INTERNAL EXAMINATION			
	Screw thread measurement – Screw thread terminology; Measurement of major diameter; Measurement of minor or root		1	
	diameter.			
	Measurement of pitch; Measurement of effective diameter with two wire method and three wire method.		1	
	Measurement of flank angle and form by profile projector and		1	

	microscope.		
	Measurement of surface texture – Meaning of surface texture,	1	
	roughness and waviness; Analysis of surface traces, peak to valley		
III	height, R.M.S. value, Centre Line Average and R ₂ value, Rt, Rz		
	etc		
	Methods of maggining surface roughness. Studie prohe	1	15%
	methods of measuring surface foughness – Stylus probe,	I	13 /0
	Tomlinson surface meter, Talysurf; Terms used in surface		
	roughness measurement – assessment length, roughness width cut-		
	off, sampling length and evaluation length.	A	
	Interference method for measuring surface roughness – using	1	
	optical flat and interferometers.		
	Autocollimator, principle and use of autocollimator	1	
	Machine tool metrology Alignment testing of machine tools like	1	
	latha milling maching drilling maching	1	
	Advanced measuring devices – Laser interferometers.	1	
	Coordinate Measuring Machine (CMM) – Introduction to CMM;	1	
	Components and construction of CMM.		
IV	Types of CMM: Advantages and application of CMM	1	15%
	CMM probes types of probes contact probes and non contact	1	
	evitive probes, types of probes – contact probes and non contact	1	
	Machine Vision – Introduction to machine vision, functions,	1	
	applications and advantages of machine vision.		
	Steps in machine vision	1	
	SECOND INTERNAL EXAMINATION		
	Introduction to Mechanical Measurement – significance of	1	
	Introduction to Mechanical Measurement – significance of mechanical measurement: Fundamental methods of measurement:	1	
	Introduction to Mechanical Measurement – significance of mechanical measurement; Fundamental methods of measurement; Classification of measuring instrument	1	
	Introduction to Mechanical Measurement – significance of mechanical measurement; Fundamental methods of measurement; Classification of measuring instrument.	1	
	Introduction to Mechanical Measurement – significance of mechanical measurement; Fundamental methods of measurement; Classification of measuring instrument. Stages in generalized measuring system – Sensor-Transducer	1	
	Introduction to Mechanical Measurement – significance of mechanical measurement; Fundamental methods of measurement; Classification of measuring instrument. Stages in generalized measuring system – Sensor-Transducer stage, Signal-Conditioning stage, Readout-Recording stage; Types	1	
	Introduction to Mechanical Measurement – significance of mechanical measurement; Fundamental methods of measurement; Classification of measuring instrument. Stages in generalized measuring system – Sensor-Transducer stage, Signal-Conditioning stage, Readout-Recording stage; Types of input quantities; Active and Passive transducers.	1	
	Introduction to Mechanical Measurement – significance of mechanical measurement; Fundamental methods of measurement; Classification of measuring instrument. Stages in generalized measuring system – Sensor-Transducer stage, Signal-Conditioning stage, Readout-Recording stage; Types of input quantities; Active and Passive transducers. Performance characteristic of measuring devices –	1 1 1 1 1	20%
	Introduction to Mechanical Measurement – significance of mechanical measurement; Fundamental methods of measurement; Classification of measuring instrument. Stages in generalized measuring system – Sensor-Transducer stage, Signal-Conditioning stage, Readout-Recording stage; Types of input quantities; Active and Passive transducers. Performance characteristic of measuring devices – Static characteristics – Accuracy, Precision, Repeatability,	1	20%
	Introduction to Mechanical Measurement – significance of mechanical measurement; Fundamental methods of measurement; Classification of measuring instrument. Stages in generalized measuring system – Sensor-Transducer stage, Signal-Conditioning stage, Readout-Recording stage; Types of input quantities; Active and Passive transducers. Performance characteristic of measuring devices – Static characteristics – Accuracy, Precision, Repeatability, Sensitivity, Reproducibility, Drift, Resolution, Threshold,	1	20%
V	Introduction to Mechanical Measurement – significance of mechanical measurement; Fundamental methods of measurement; Classification of measuring instrument. Stages in generalized measuring system – Sensor-Transducer stage, Signal-Conditioning stage, Readout-Recording stage; Types of input quantities; Active and Passive transducers. Performance characteristic of measuring devices – Static characteristics – Accuracy, Precision, Repeatability, Sensitivity, Reproducibility, Drift, Resolution, Threshold, Hysteresis, Static calibration.	1	20%
v	Introduction to Mechanical Measurement – significance of mechanical measurement; Fundamental methods of measurement; Classification of measuring instrument. Stages in generalized measuring system – Sensor-Transducer stage, Signal-Conditioning stage, Readout-Recording stage; Types of input quantities; Active and Passive transducers. Performance characteristic of measuring devices – Static characteristics – Accuracy, Precision, Repeatability, Sensitivity, Reproducibility, Drift, Resolution, Threshold, Hysteresis, Static calibration.	1 1 1 1 1 1 1 1	20%
v	Introduction to Mechanical Measurement – significance of mechanical measurement; Fundamental methods of measurement; Classification of measuring instrument. Stages in generalized measuring system – Sensor-Transducer stage, Signal-Conditioning stage, Readout-Recording stage; Types of input quantities; Active and Passive transducers. Performance characteristic of measuring devices – Static characteristics – Accuracy, Precision, Repeatability, Sensitivity, Reproducibility, Drift, Resolution, Threshold, Hysteresis, Static calibration. Dynamic characteristics- different order systems and their response- Measuring lag Fidelity, Dynamic error; Types of errors	1 1 1 1 1 1 1	20%
V	Introduction to Mechanical Measurement – significance of mechanical measurement; Fundamental methods of measurement; Classification of measuring instrument. Stages in generalized measuring system – Sensor-Transducer stage, Signal-Conditioning stage, Readout-Recording stage; Types of input quantities; Active and Passive transducers. Performance characteristic of measuring devices – Static characteristics – Accuracy, Precision, Repeatability, Sensitivity, Reproducibility, Drift, Resolution, Threshold, Hysteresis, Static calibration. Dynamic characteristics- different order systems and their response-, Measuring lag, Fidelity, Dynamic error; Types of errors in measurement	1 1 1 1 1	20%
V	Introduction to Mechanical Measurement – significance of mechanical measurement; Fundamental methods of measurement; Classification of measuring instrument. Stages in generalized measuring system – Sensor-Transducer stage, Signal-Conditioning stage, Readout-Recording stage; Types of input quantities; Active and Passive transducers. Performance characteristic of measuring devices – Static characteristics – Accuracy, Precision, Repeatability, Sensitivity, Reproducibility, Drift, Resolution, Threshold, Hysteresis, Static calibration. Dynamic characteristics- different order systems and their response-, Measuring lag, Fidelity, Dynamic error; Types of errors in measurement.	1 1 1 1 1 1 1	20%
V	Introduction to Mechanical Measurement – significance of mechanical measurement; Fundamental methods of measurement; Classification of measuring instrument. Stages in generalized measuring system – Sensor-Transducer stage, Signal-Conditioning stage, Readout-Recording stage; Types of input quantities; Active and Passive transducers. Performance characteristic of measuring devices – Static characteristics – Accuracy, Precision, Repeatability, Sensitivity, Reproducibility, Drift, Resolution, Threshold, Hysteresis, Static calibration. Dynamic characteristics- different order systems and their response-, Measuring lag, Fidelity, Dynamic error; Types of errors in measurement. Transducers – Working, Classification of transducers.	1 1 1 1 1	20%
V	Introduction to Mechanical Measurement – significance of mechanical measurement; Fundamental methods of measurement; Classification of measuring instrument. Stages in generalized measuring system – Sensor-Transducer stage, Signal-Conditioning stage, Readout-Recording stage; Types of input quantities; Active and Passive transducers. Performance characteristic of measuring devices – Static characteristics – Accuracy, Precision, Repeatability, Sensitivity, Reproducibility, Drift, Resolution, Threshold, Hysteresis, Static calibration. Dynamic characteristics- different order systems and their response-, Measuring lag, Fidelity, Dynamic error; Types of errors in measurement. Transducers – Working, Classification of transducers. Motion and Dimension measurement – LVDT – Principle,	1 1 1 1 1 1 1 1	20%
V	Introduction to Mechanical Measurement – significance of mechanical measurement; Fundamental methods of measurement; Classification of measuring instrument. Stages in generalized measuring system – Sensor-Transducer stage, Signal-Conditioning stage, Readout-Recording stage; Types of input quantities; Active and Passive transducers. Performance characteristic of measuring devices – Static characteristics – Accuracy, Precision, Repeatability, Sensitivity, Reproducibility, Drift, Resolution, Threshold, Hysteresis, Static calibration. Dynamic characteristics- different order systems and their response-, Measuring lag, Fidelity, Dynamic error; Types of errors in measurement. Transducers – Working, Classification of transducers. Motion and Dimension measurement – LVDT – Principle, applications, advantages and limitations.	1 1 1 1 1 1 1	20%
V	Introduction to Mechanical Measurement – significance of mechanical measurement; Fundamental methods of measurement; Classification of measuring instrument. Stages in generalized measuring system – Sensor-Transducer stage, Signal-Conditioning stage, Readout-Recording stage; Types of input quantities; Active and Passive transducers. Performance characteristic of measuring devices – Static characteristics – Accuracy, Precision, Repeatability, Sensitivity, Reproducibility, Drift, Resolution, Threshold, Hysteresis, Static calibration. Dynamic characteristics- different order systems and their response-, Measuring lag, Fidelity, Dynamic error; Types of errors in measurement. Transducers – Working, Classification of transducers. Motion and Dimension measurement – LVDT – Principle, applications, advantages and limitations. Strain and Stress Measurement - Electrical resistance strain gauge	1 1 1 1 1 1 1 1	20%
V V1	Introduction to Mechanical Measurement – significance of mechanical measurement; Fundamental methods of measurement; Classification of measuring instrument. Stages in generalized measuring system – Sensor-Transducer stage, Signal-Conditioning stage, Readout-Recording stage; Types of input quantities; Active and Passive transducers. Performance characteristic of measuring devices – Static characteristics – Accuracy, Precision, Repeatability, Sensitivity, Reproducibility, Drift, Resolution, Threshold, Hysteresis, Static calibration. Dynamic characteristics- different order systems and their response-, Measuring lag, Fidelity, Dynamic error; Types of errors in measurement. Transducers – Working, Classification of transducers. Motion and Dimension measurement – LVDT – Principle, applications, advantages and limitations. Strain and Stress Measurement - Electrical resistance strain gauge - Principle, operation.	1 1 1 1 1 1 1 1	20%
V V1	Introduction to Mechanical Measurement – significance of mechanical measurement; Fundamental methods of measurement; Classification of measuring instrument. Stages in generalized measuring system – Sensor-Transducer stage, Signal-Conditioning stage, Readout-Recording stage; Types of input quantities; Active and Passive transducers. Performance characteristic of measuring devices – Static characteristics – Accuracy, Precision, Repeatability, Sensitivity, Reproducibility, Drift, Resolution, Threshold, Hysteresis, Static calibration. Dynamic characteristics- different order systems and their response-, Measuring lag, Fidelity, Dynamic error; Types of errors in measurement. Transducers – Working, Classification of transducers. Motion and Dimension measurement – LVDT – Principle, applications, advantages and limitations. Strain and Stress Measurement - Electrical resistance strain gauge - Principle, operation. Measurement of Force and Torque – Strain-Gauge Load Cells.	1 1 1 1 1 1 1 1 1 1	20%
V V1	Introduction to Mechanical Measurement – significance of mechanical measurement; Fundamental methods of measurement; Classification of measuring instrument. Stages in generalized measuring system – Sensor-Transducer stage, Signal-Conditioning stage, Readout-Recording stage; Types of input quantities; Active and Passive transducers. Performance characteristic of measuring devices – Static characteristics – Accuracy, Precision, Repeatability, Sensitivity, Reproducibility, Drift, Resolution, Threshold, Hysteresis, Static calibration. Dynamic characteristics- different order systems and their response-, Measuring lag, Fidelity, Dynamic error; Types of errors in measurement. Transducers – Working, Classification of transducers. Motion and Dimension measurement – LVDT – Principle, applications, advantages and limitations. Strain and Stress Measurement - Electrical resistance strain gauge - Principle, operation. Measurement of Force and Torque – Strain-Gauge Load Cells, Hydraulic and Pneumatic load cells – basic principle and three	1 1 1 1 1 1 1 1 1	20%
V V1	Introduction to Mechanical Measurement – significance of mechanical measurement; Fundamental methods of measurement; Classification of measuring instrument. Stages in generalized measuring system – Sensor-Transducer stage, Signal-Conditioning stage, Readout-Recording stage; Types of input quantities; Active and Passive transducers. Performance characteristic of measuring devices – Static characteristics – Accuracy, Precision, Repeatability, Sensitivity, Reproducibility, Drift, Resolution, Threshold, Hysteresis, Static calibration. Dynamic characteristics- different order systems and their response-, Measuring lag, Fidelity, Dynamic error; Types of errors in measurement. Transducers – Working, Classification of transducers. Motion and Dimension measurement – LVDT – Principle, applications, advantages and limitations. Strain and Stress Measurement - Electrical resistance strain gauge - Principle, operation. Measurement of Force and Torque – Strain-Gauge Load Cells, Hydraulic and Pneumatic load cells – basic principle and three component force measurement using piezoelectric quartz crystal	1 1 1 1 1 1 1 1 1	20%
V V1	Introduction to Mechanical Measurement – significance of mechanical measurement; Fundamental methods of measurement; Classification of measuring instrument. Stages in generalized measuring system – Sensor-Transducer stage, Signal-Conditioning stage, Readout-Recording stage; Types of input quantities; Active and Passive transducers. Performance characteristic of measuring devices – Static characteristics – Accuracy, Precision, Repeatability, Sensitivity, Reproducibility, Drift, Resolution, Threshold, Hysteresis, Static calibration. Dynamic characteristics- different order systems and their response-, Measuring lag, Fidelity, Dynamic error; Types of errors in measurement. Transducers – Working, Classification of transducers. Motion and Dimension measurement – LVDT – Principle, applications, advantages and limitations. Strain and Stress Measurement - Electrical resistance strain gauge - Principle, operation. Measurement of Force and Torque – Strain-Gauge Load Cells, Hydraulic and Pneumatic load cells – basic principle and three component force measurement using piezoelectric quartz crystal.		20%
V V1	Introduction to Mechanical Measurement – significance of mechanical measurement; Fundamental methods of measurement; Classification of measuring instrument. Stages in generalized measuring system – Sensor-Transducer stage, Signal-Conditioning stage, Readout-Recording stage; Types of input quantities; Active and Passive transducers. Performance characteristic of measuring devices – Static characteristics – Accuracy, Precision, Repeatability, Sensitivity, Reproducibility, Drift, Resolution, Threshold, Hysteresis, Static calibration. Dynamic characteristics- different order systems and their response-, Measuring lag, Fidelity, Dynamic error; Types of errors in measurement. Transducers – Working, Classification of transducers. Motion and Dimension measurement – LVDT – Principle, applications, advantages and limitations. Strain and Stress Measurement - Electrical resistance strain gauge - Principle, operation. Measurement of Force and Torque – Strain-Gauge Load Cells, Hydraulic and Pneumatic load cells – basic principle and three component force measurement using piezoelectric quartz crystal. Torque Measurement – Dynamometers – Mechanical, Hydraulic and Eleatrical	1 1 1 1 1 1 1 1 1 1 1 1	20%
V V1	Introduction to Mechanical Measurement – significance of mechanical measurement; Fundamental methods of measurement; Classification of measuring instrument. Stages in generalized measuring system – Sensor-Transducer stage, Signal-Conditioning stage, Readout-Recording stage; Types of input quantities; Active and Passive transducers. Performance characteristic of measuring devices – Static characteristics – Accuracy, Precision, Repeatability, Sensitivity, Reproducibility, Drift, Resolution, Threshold, Hysteresis, Static calibration. Dynamic characteristics- different order systems and their response-, Measuring lag, Fidelity, Dynamic error; Types of errors in measurement. Transducers – Working, Classification of transducers. Motion and Dimension measurement – LVDT – Principle, applications, advantages and limitations. Strain and Stress Measurement - Electrical resistance strain gauge - Principle, operation. Measurement of Force and Torque – Strain-Gauge Load Cells, Hydraulic and Pneumatic load cells – basic principle and three component force measurement using piezoelectric quartz crystal. Torque Measurement – Dynamometers – Mechanical, Hydraulic and Electrical.		20%
V V1	Introduction to Mechanical Measurement – significance of mechanical measurement; Fundamental methods of measurement; Classification of measuring instrument. Stages in generalized measuring system – Sensor-Transducer stage, Signal-Conditioning stage, Readout-Recording stage; Types of input quantities; Active and Passive transducers. Performance characteristic of measuring devices – Static characteristics – Accuracy, Precision, Repeatability, Sensitivity, Reproducibility, Drift, Resolution, Threshold, Hysteresis, Static calibration. Dynamic characteristics- different order systems and their response-, Measuring lag, Fidelity, Dynamic error; Types of errors in measurement. Transducers – Working, Classification of transducers. Motion and Dimension measurement – LVDT – Principle, applications, advantages and limitations. Strain and Stress Measurement - Electrical resistance strain gauge - Principle, operation. Measurement of Force and Torque – Strain-Gauge Load Cells, Hydraulic and Pneumatic load cells – basic principle and three component force measurement using piezoelectric quartz crystal. Torque Measurement – Dynamometers – Mechanical, Hydraulic and Electrical. Vibration measurement – Vibrometers and Accelerometers – Basic	1 1 1 1 1 1 1 1 1 1 1 1	20%

Temperature Measurement – Use of Thermal Expansion – Liquid- in-glass thermometers, Bimetallic strip thermometer, Pressure thermometers.	1	20%
Thermocouples – Principle, application laws for Thermocouples,	1	
Thermocouple EMF.		
Resistance Temperature Detectors (RTD); Thermistors;	1	
Pyrometers (Basic Principles).		
END SEMESTED EVAMINATION	1	

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Course code	Course Name	L-T-P- Credits	Year of Introduction		
ME332	COMPUTER AIDED DESIGN AND ANALYSIS LAB	0-0-3-1	2016		
Prerequisit	rerequisite: ME308 Computer aided design and analysis				
Course O	bjectives: To provide working knowledge on Computer Aided Design me To impart training on solid modelling software To impart training on finite element analysis software	thods and pr	ocedures		
Syllabus Introduc Exercise a. Creat b. Creat (mini Exercise systems a. St b. T c. F	ction to solid modeling and Finite Element Analysis software. es on modeling and assembly. ion of higher end 3D solid models.(minimum 3 models) ion of assembled views of riveted joints, cotter joints and shaft mum 3 models) es on the application of Finite Element Method/Finite Volume 2 :- tructural analysis. (minimum 3 problems) hermal analysis. (minimum 2 problems) luid flow analysis. (minimum 1 problem)	couplings. Method to e	ngineering		
Expected The studer	outcome: ts will be able to				
i. ii.	Gain working knowledge in Computer Aided Design methods a Solve simple structural, heat and fluid flow problems using sta	and procedur andard softw	es are		
Points to r	note:Any appropriate solid modeling software (like CATIA, Solids VSolid Edge and NX, free software, etc.) and package (like ANSNASTRAN, ABAQUS, ADINA, Siemens Femap Nastran, freeEvaluationClass exercises60 marksRegular class viva10 marksFinal internal exam using software30 marksAll the above three evaluations are mandatory.	Works, ProE. YS, Comsol software etc	, IDEAS, Siemens Multi Physics, .) may be used.		
Reference 1. 2. 3. 4. 5.	es Books: Daryl Logan, A First course in Finite Element Method, Thomso David V Hutton, Fundamentals of Finite Element Analysis, Tat Ibrahim Zeid, CAD/ CAM Theory and Practice, McGraw Hill, Mikell P. Groover and Emory W. Zimmer, CAD/ CAM – Com manufacturing, Pearson Education, 1987 T. R. Chandrupatla and A. D. Belagundu, Introduction to Finite Pearson Education, 2012	on Learning, a McGraw H 2007 puter aided d e Elements in	2007 Iill,2003 lesign and Engineering,		

Course code	Course Name	L-T-P- Credits	Year of Introduction		
ME332	COMPUTER AIDED DESIGN AND ANALYSIS LAB	0-0-3-1	2016		
Prerequisit	rerequisite: ME308 Computer aided design and analysis				
Course O	bjectives: To provide working knowledge on Computer Aided Design me To impart training on solid modelling software To impart training on finite element analysis software	thods and pr	ocedures		
Syllabus Introduc Exercise a. Creat b. Creat (mini Exercise systems a. St b. T c. F	ction to solid modeling and Finite Element Analysis software. es on modeling and assembly. ion of higher end 3D solid models.(minimum 3 models) ion of assembled views of riveted joints, cotter joints and shaft mum 3 models) es on the application of Finite Element Method/Finite Volume 2 :- tructural analysis. (minimum 3 problems) hermal analysis. (minimum 2 problems) luid flow analysis. (minimum 1 problem)	couplings. Method to e	ngineering		
Expected The studer	outcome: ts will be able to				
i. ii.	Gain working knowledge in Computer Aided Design methods a Solve simple structural, heat and fluid flow problems using sta	and procedur andard softw	es are		
Points to r	note:Any appropriate solid modeling software (like CATIA, Solids VSolid Edge and NX, free software, etc.) and package (like ANSNASTRAN, ABAQUS, ADINA, Siemens Femap Nastran, freeEvaluationClass exercises60 marksRegular class viva10 marksFinal internal exam using software30 marksAll the above three evaluations are mandatory.	Works, ProE. YS, Comsol software etc	, IDEAS, Siemens Multi Physics, .) may be used.		
Reference 1. 2. 3. 4. 5.	es Books: Daryl Logan, A First course in Finite Element Method, Thomso David V Hutton, Fundamentals of Finite Element Analysis, Tat Ibrahim Zeid, CAD/ CAM Theory and Practice, McGraw Hill, Mikell P. Groover and Emory W. Zimmer, CAD/ CAM – Com manufacturing, Pearson Education, 1987 T. R. Chandrupatla and A. D. Belagundu, Introduction to Finite Pearson Education, 2012	on Learning, a McGraw H 2007 puter aided d e Elements in	2007 Iill,2003 lesign and Engineering,		

Course code	Course Name	L-T-P- Credits	Year of Introduction	
MP302	ADVANCED MATERIALS & MANUFACTURING SYSTEMS	3-0-0-3	2016	
Prerequisite: MF	212 Machine Tools	T 4 1		
Course Objective	es: A A	AA	A	
To devel	op a basic knowledge on powder metallurgy proces	s of manufa	cturing.	
• To intro compone	oduce machining principles and processes in the ents and products that use conventional and noncom	e manufactu ventional teo	re of precision chnologies.	
• To give of advan	basic understanding of the machining capabilities, l ced manufacturing process.	imitations, a	and productivity	
To devel	op a basic knowledge on digital manufacturing.	-		
Syllabus:-				
Powder Metallurg metals-material ad science.	gy- Non-traditional and micro machining process difficient digital manufacturing digital manufacturing the second se	- high velo ng and digita	al manufacturing	
Expected outcom	ne: At the end of the course the students will be able	e to		
i. Develo	op a basic knowledge on powder metallurgy and it	s application	ns in fabrication	
of com	posite materials.			
ii. Becom	ne conversant with non- traditional machining pro	ocess and to	o appreciate the	
effect	of process parameters on the surface integrity	aspects d	uring the non-	
traditio	onal machining process.	c 1···		
111. Appred	clate the use of EDM as a non traditional method	of machini	ng complex and	
iv. Prescr	ibe a laser processing technique suitable for a given	product wit	th material, size,	
precisi	on, and surface quality requirements.	1		
v. Select	the tool material and machining process parameters	i.		
vi. Get a l	pasic knowledge on the importance of digital manuf	acturing.		
Text books	LStu,	1		
1. ASTME. I	High velocity forming of metals, PHI, 1968.			
2. Davies K	and Austin E.R, Developments in high speed metal	forming, Th	e machinery	
publishing	g Co, 1970, ISBN -853332053.		-	
3. Jain V.K.,	Introduction to Micromachining, Narosa publishers	5,2014		
4. Zude Zho	bu, Shane (Shengquan) Xie and Dejun Chen,	Fundamen	tals of Digital	
Manufacturing Science, Springer-Verlag London Limited,2012				
Reference books				
1. Hajra Cho	udary, Elements of workshop technology, Vol I & 1	I, Media Pu	blishers,2010	
2. Lihui War	ng and Andrew Yeh Ching Nee, Collaborative Desig	gn and Planr	ning for Digital	
Manufactu	uring, Springer-Verlag London Limited,2009			
3. Malkin St	ephen, Grinding Technology: Theory and Application	ons of Mach	ining with	
Abrasives	, muusunai press,2008			

Course Plan				
Module	Contents	Hours	End. Sem. Exam. Marks	
	Introduction to nano materials & manufacturing. Need and comparison between traditional, non-traditional and micro & nano machining processes. Powder Metallurgy: Need of P/M - Powder Production methods:- Atomization, electrolysis, Reduction of oxides, Carbonyls (Process parameters, characteristics of powder produced in each method). Powder characteristics: properties of fine powder, size, size		150/	
I	distribution, shape, compressibility, purity etc. Mixing – Compaction:- techniques, pressure distribution, HIP & CIP.	1	15%	
	Mechanism of sintering, driving force for pore shirking, solid and liquid phase sintering - Impregnation and Infiltration Advantages, disadvantages.	1		
	Applications in processing of metal matrix and ceramic matrix composites.	1		
	Electric Discharge Machining (EDM):- Mechanism of metal removal, dielectric fluid, spark generation, recast layer and attributes of process characteristics on MRR, accuracy, HAZ etc, Wire EDM, applications and accessories.	3		
II	Ultrasonic Machining (USM):-mechanics of cutting, effects of parameters on amplitude, frequency of vibration, grain diameter, slurry, tool material attributes and hardness of work material, applications.	2	15%	
	Electro chemical machining (ECM):- Mechanism of metal removal attributes of process characteristics on MRR, accuracy and surface roughness, Application and limitations.	1		
	FIRST INTERNAL EXAMINATION			
Ш	Laser Beam Machining (LBM), Electron Beam Machining (EBM), Plasma arc Machining (PAM), Ion beam Machining(IBM) - Mechanism of metal removal, attributes of process characteristics on MRR, accuracy and structure of HAZ compared with conventional process; application, comparative study of advantages and limitations of each process.	3	15%	
	Abrasive Jet Machining (AJM), Abrasive Water Jet Machining (AWJM) - Working principle, Mechanism of metal removal, Influence of process parameters, Applications, Advantages &	3		

	disadvantages.		
	High velocity forming of metals:-effects of high speeds on the stress strain relationship steel, aluminum, Copper – comparison of conventional and high velocity forming methods- deformation velocity, material behavior, stain distribution.	3	
	Stress waves and deformation in solids – types of elastic body waves- relation at free boundaries- relative particle velocity.	2	15%
1.	Sheet metal forming: - explosive forming:-process variable, properties of explosively formed parts, etc.	2	15%
	Electro hydraulic forming: - theory, process variables, etc, comparison with explosive forming.	1	
	SECOND INTERNAL EXAMINATION		
	Micromachining: Diamond turn mechanism, material removal mechanism, applications.	1	
	Advanced finishing processes: - Abrasive Flow Machining, Magnetic Abrasive Finishing.	2	
V	Magnetorheological Abrasive Flow Finishing, Magnetic Float Polishing, Elastic Emission Machining.	3	20%
	Material addition process:- stereo-lithography, selective laser sintering, 3D Printing, fused deposition modeling, laminated object manufacturing, laser engineered net-shaping, laser welding, LIGA process.	2	
	Introduction to Digital Manufacturing: Concepts and research	1	
	Definition of digital manufacturing – Features and development of digital manufacturing.	1	
	Theory system of digital manufacturing science: Operation Mode and Architecture of Digital Manufacturing System	1	
V1	Operation reference mode of digital manufacturing system – Architecture of digital manufacturing system	1	20%
	Modeling theory and method of digital manufacturing science	1	
	Critical modeling theories and technologies of digital manufacturing science	1	
	Theory system of digital manufacturing science – Basic architecture model of digital manufacturing system.	1	
	END SEMESTER EXAM		

Maximum marks: 100

Time: 3 hours

The question paper should consist of three parts

Part A

There should be 2 questions each from modules I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from modules III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Course code	Course NameL-T-P- CreditsYe In	ar of troductio	on		
MP362	Precision Engineering 3-0-0-3	2016			
Prerequisite	: MP212 Machine Tools	A.			
Course Ob	jectives: To provide an overview of the principles of precision and micro manufacturi	ng	& errors		
Syllabus Concepts of elements, S finish, Mic Expected o The student	 To introduce principles applied to precision engineering systems, including: accuracy & errors Syllabus Concepts of accuracy and precision, Micro & Ultra precision Machining, Ultra precision Machine elements, Sources of error in location and machining, Principles of dimensioning, accuracy and surface finish, Micro manufacturing processes, Smart structures, sensors and micro actuators Expected outcome: The students will be able to 				
i. App ii. Sele	ly design procedures for precision manufacturing. ct manufacturing processes to suit accuracy and precision				
 References Books: Kalpakjian S., Manufacturing Engineering and Technology. 3rd Ed. Addision-Wesley Publishing Co.,New York, 2001. Murthy R.L. Precision Engineering in Manufacturing, New Age International, 2005 Nakazawa, H. Principles of Precision Engineering, Oxford University Press, 1994. Norio Tanigughi, Nano Technology, Oxford University Press, 1996. Randy Frank, Understanding Smart Sensors, Artech House, Boston, 1996. Stephen A. Campbell, The Science and Engineering of Micro Electronic Fabrication, Oxford University Press, 1996. V.C.Venktesh, Precision Engineering, Tata Mc.Graw Hill, New Delhi 2007 					
	Course Plan				
Module	Contents ESTO.	Hours	Sem. Exam Marks		
I	Need for having high precision,-Accuracy & precision- Four Classes of Achievable Machining Accuracy,- Precision Machining, High-precision Ultra-precision Processes and Nanotechnology Thermal effects – Materials for tools and machine elements – carbides – ceramics, CBN & diamond.	6	15%		
п	Ultra precision machine elements – Guide ways – Drive systems – Spindle drive – preferred numbers – Rolling elements – hydrodynamic & hydrostatic bearings – pneumatic bearings. Selective assembly – gauges acceptance tests for machine tools.	6	15%		

FIRST INTERNAL EXAM

III – I acc	Sources of error– Static stiffness – Variation of the cutting force – total compliance – Different machining methods – Thermal effects – heat source – heat dissipation – decreasing thermal effects – forced vibration on accuracy – clamping & setting errors – Control – errors due to locations – principle of constant location surfaces.						
Dim IV toler – co	nensioning, accuracy and surface finish: Definition of terms – assigning rances in the constituent dimensions –Limits and fits- dimensional chains neepts of precision machining - finish turning-boring-grinding.	7	15%				
 	SECOND INTERNAL EXAM						
Mic litho V bear ME	ro manufacturing processes: Micro machining-photo resist process- ography- optical. Processing of materials-electron beam machining-iron n machining-micro forming, diamond turning-micro positioning devices. MS – principle – elements – characteristics – design – applications	8	20%				
Sma sens VI dyna mica	art structures, sensors and micro actuators: Smart Structures-smart sors-micro valves-MEMS- micro motors - micro pumps – micro amometer - micro machines – structures - cooling channels - micro optics- ro nozzles. Applications.	8	20%				
	END SEMESTER EXAM						
Maximum ma	Question Paper Pattern arks: 100 Time:	3 hrs					
Part A There should Each question Students will	be 2 questions each from module I and II n carries 10 marks have to answer any three questions out of 4 (3X10 marks =30 marks)						
Part B There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)							
Part C There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)							
Note: In all j	parts each question can have a maximum of four sub questions						

Course code	Course Name	L-T-P -	Year of	
MP364	Rapid prototyping Tooling & Manufacture	Credits	2016	
1/11 304	Prerequisite • Nil	5-0-0-5	2010	
Course Objecti	ves:			
The course is m	eant to provide knowledge in:			
• Concept	s of rapid prototyping, (RP) rapid tooling and rapid manu	facturing		
• Features	of polymer based and metal based rapid prototyping tech	nologies		
• Design c	considerations for additive manufacturing (AM)	C		
Recent d	evelopments and future trends in RP / AM			
Industria	l applications of RP / AM			
Syllabus:	TECHNOLOGI	SUL		
Functional conc	epts in rapid prototyping (RP), Photo-polymerisation pr	ocess and fea	atures, Extrusion	
and sheet lamir	ation based processes, Power based RP methods, Post	processing	of RP products,	
Rapid tooling, I	Design for additive manufacturing, File types in RP tech	nology, Late	st developments	
ant future trends	in additive manufacturing (AM), RP/AM applied in var	ious industrie	es.	
The students wi	ll be able to:			
• Compare	the features of various polymer based and metal based r	anid prototy	ving	
technolo	oies	apid prototy	Jing	
• Explain	the mechanisms involved in product formation with varie	ous rapid mar	ufacturing	
methods		us iupiu illu		
 Describe 	the designs concepts involved in RP/AM			
 Describe 	modern trends, developments in AM and the industrial a	applications		
Text Book:				
• Gibson,	I, D. W. Rosen, and B. Stucker. Additive Manufac	cturing Tech	nologies: Rapid	
Prototyp	ing to Direct Digital Manufacturing. Springer Verlag, 20	15		
References:				
Chee Kai Chua Principles and A	a, Kah Fai Leong and Chu Sing Lim. 3D Printing a applications (Fifth Edition of Rapid Prototyping), World S	nd Additive Scientific, 5e,	Manufacturing: 2017	
Pham D, and Di	moy S.S. Rapid Manufacturing-The Technologies and A	pplications of	f Rapid	
Prototyping and	Rapid Tooling, Springer Verlag, 2001	ppnearons o	Tupu	
JI 8				
Web Reference Module 1:	s:			
https://dupress.c	leloitte.com/dup-us-en/focus/3d-opportunity/the-3d-oppo	rtunity-prime	er-the-basics-of-	
additive-manufa	<u>icturing.html</u>			
Module 2				
http://www.lbor	o.ac.uk/research/amrg/about/the7categoriesofadditivema	nufacturing/		
Module 3				
http://www.lboro.ac.uk/research/amrg/about/the/categoriesofadditivemanufacturing/powderbedfusion				
<u>/</u> http://www.lboro.ac.uk/research/amrg/about/the7categoriesofadditivemanufacturing/directedenergyde				
position/				
http://www.met	al-am.com/introduction-to-metal-additive-manufacturing	-and-3d-print	ting/metal-	
additive-manufa	icturing-processes/			
Nodule 4	ave info/quality matel am/no since/ 27/nost processing/			
/ http://www.lbor position/ http://www.meta additive-manufa Module 4 http://www.man	o.ac.uk/research/amrg/about/the7categoriesofadditivemanal-am.com/introduction-to-metal-additive-manufacturing acturing-processes/	nufacturing/d -and-3d-print	<u>lirectedenergyde</u> <u>ing/metal-</u>	

1					
http://www	w.stratasys.com/solutions/additive-manufacturing/tooling				
https://3dj	https://3dprint.com/55676/additive-manufacturing-tooling/				
https://ww	<u>/w.eos.info/tooling</u>				
http://usgl	obalimages.stratasys.com/Main/Secure/White%20Papers/Rebranded/SSYS	WP3DPr	<u>intingJi</u>		
gsF1xtures	$\frac{30313.\text{pdf}}{12} = 635004364020117830$				
http://www	w.advice-manufacturing.com/3D-Printing-Jigs.ntml				
Nodule 5	wy strategy direct one (we content (welloods /2015/07/film hosies edf				
http://ww	/w.stratasysuffect.com/wp-content/uploads/2015/0//idm-basics.pdf				
http://cana	latform com/2017/02/02/odditive menufacturing coftware formate/				
https://fpl	Add com/what is stl file format extension 2d printing/				
http://ena	s				
oc enfl ch	<u>~</u> /files/content/sites/enacco/files/3D%20C & D%20C & M%20and%20R anid%	20Protot	vningV		
11 ndf	<u>11103/content/sites/chacco/11103/3D/020Cr4D/020Cr4V1/020and/020Rapid/0</u>	20110101	<u>ypnig v</u>		
Module 6	UNIVERSITI				
https://du	press deloitte.com/dun-us-en/focus/3d-opportunity/additive-manufacturing-	3d-oppor	tunity-		
in-aerospa	ice.html		<u>canney</u>		
http://dup	ress.com/articles/additive-manufacturing-3d-opportunity-in-medtech/				
https://du	press.deloitte.com/dup-us-en/focus/3d-opportunity/additive-manufacturing-	3d-oppor	tunity-		
in-automo	tive.html				
	Course Plan				
			End		
Module	Contents	Hour	Sem.		
Mouule	Contents	S	Exam Morka		
	Introduction and basic principles of Rapid Prototyping (RP) Advantages		IVIAI'KS		
	and applications of RP. Development of RP processes. Generalized RP				
	process chain Classification of RP Systems: Photo Polymer based				
I	systems Powder based systems Extrusion based systems and Sheet	7	15%		
	material based systems. Transition of RP terminology to 3 dimensional				
	printing (3DP)/Additive Manufacturing (AM).				
	Photo polymerization Process: Introduction to Stereo lithography.				
	Materials, Machines, Scan patterns, Resin curing process,				
	Direct printing or material jetting: Introduction, Evolution of direct				
	printing materials for printing				
II	Extrusion based process (Fused deposition modeling): Introduction	7	15%		
	Process description Process parameters materials and application	,	1070		
	Limitations				
	Sheet lamination Processes: Introduction Adhesive Bonding Thermal				
	Bonding Ultrasonic Consolidation				
	FIRST INTERNAL EXAMINATION				
	Douder had fusion process. Introduction Drocess description Devider				
	fusion mechanism. Variation of nourder had fusion processes. Scleative				
	Loop Molting (SLM) and Electron Doom Molting (EDM) for motil				
TTT	Laser Meiting (SLM) and Electron Beam Meiting (EBM) for metals,	7	150/		
111	Process parameters, materials and applications.	/	15%		
	Beam deposition process: introduction, Material delivery: powder feed,				
	wire reed, Beam deposition systems, process parameters, typical				
	materials, benefits and draw backs.				
IV	Post processing: Support material removal, Surface texture				

	improvements, Accuracy Improvements, Aesthetic improvements, Property enhancements using non-thermal techniques and thermal techniques. Tooling: Introduction, RP for rapid tooling, investment casting patterns and sand casting patterns, tooling for injection molding, quality control molds, assembly molds, Jigs & fixture tooling, Tooling with conformal cooling channels	7	15%
	SECOND INTERNAL EXAMINATION		
V	Design for Additive Manufacturing (AM): Design for Manufacturing and Assembly (DFMA), Concepts of Design for Additive Manufacturing, unique capabilities of AM, Design freedom, Design tools for AM. Software work flow in Additive Manufacturing: Preparation of CAD models and STL files, issues with STL files, STL file manipulation, other file formats such as .AMF, .3MF	7	20%
VI	Latest developments in AM: Hybrid manufacturing, Materials development in polymers for AM, Alloy development in metals for AM, Future trends and implications of AM: Mass customization and supply chain, Bio-printing Industry Focus: Aerospace components, Automobile parts, medical implants, tooling, and consumer goods.	7	20%

Question Paper Pattern

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Course	Course Name	L-T-P - Credits	Yea	r of uction
MP366	Modern manufacturing Concepts	3-0-0-3	20	16
	Prerequisite : Nil			
Course (Dhiectives:			
• T	o introduce modern trends in casting, methods of manufact	turing com	posite n	naterial
pı	oducts and surface processing methods.		L	
• T	b learn features and applications of powder metallurgy			
• T	o know rapid prototyping methods and rapid tooling	NA I		
• T	o make aware the recent developments in non-conventional sur	face finishing	ng proce	esses.
Syllabus	TECLINIALACIA	AI		
Modern c	asting processes, Modern plastic shaping processes, Polymer n	natrix comp	osite pro	ocesses
and featu	res, Powder metallurgy – processes and mechanisms, Rapid	l prototypin	g metho	ods for
polymer	and metals products, Recent developments in non-traditional su	irface finish	ing proc	cesses.
Expected	outcome:			
The stude	ents will be able to:			
1. K	now the features of various modern casting and plastic forming	, processes	C	1 . 1
11. St	iggest suitable polymer matrix composite process for the	manufactu	re of s	elected
1n	dustrial components.			
111. U	nderstand features of various coating processes for metals and o	ceramics		
	plain the mechanisms involved in powder metallurgy process			
	ustrate the functioning of various rapid prototyping processes	n r0000000		
VI. U Deferer		g processes		
	retead B. H. Octwald Phylins and P. I. Bageman Manufa	cturing Pro	CASSAS	Iohn
	Flow Song 1097	cluing 110		JOIIII
	neys Solls, 1987.			
2. B	ranem. I. Smith, Advanced macming, I.F.S., U.K., 1989.		11 1	
5. JC	lao Faulo Davim, Machining – Fundamentals and recent ad	vances, Ch	I-II AU	vanced
	ikall P. Groover, Eundementals of modern manufacturing	Matoriala	Drocoss	as and
4. IV	stems (4 th Edition) John Wiley and Sons 2010	-wialchiais,	FIDCESS	es allu
5 M	Succide F. A. Plastic Processing Technology Materials Park O	HIO ASM	Int 199	4
6 Se	erope Kalpakijan Manufacturing Engineering and Technology	Third Edi	tion- A	 Idison-
v. s.	Vesley Publication Co. 1995	, Third Edi		acaison
7 5	erope Kalpakijan Steven R Schemid Manufacturing pr	ocesses fo	r Engii	neering
7. S.	aterials Fourth edition Pearson Education 2003	100003503 10	i Engi	leering
111	Course Plan			
	Course I han			End
Modulo	Contonts		Hours	Sem.
Mouule	Contents		110015	Exam
	Advances in casting Newer casting processes - Director	mold and		Marks
	ceramic mold casting, vacuum casting Evaporative patter	m casting		
	ceramic shell investment casting slush casting squeeze of	asting and		
Ι	semisolid metal forming	usung and	7	15%
	Manufacturing processes for plastics: Thermoforming Co	mpression		
	moulding. Transfer moulding. Foam moulding			
	Shaping processes for polymer matrix composites (PMCs):	Materials		
II	for PMCs, Classification of manufacturing processes for	or fiber-	7	15%

	reinforced polymer composites. Combining matrix and reinforcement,		
	Winding Pultrusion Processes		
	Other PMC Shaping Processes-Centrifugal casting tube rolling		
	continuous laminating		
	FIRST INTERNAL EXAMINATION		
	Surface processing operations: Mechanical cleaning and surface		
	treatments- Diffusion and Ion Implantation, Plating Processes-		
TTT	Electroplating and electroless plating, hot dipping. Conversion Coating,	7	150/
111	Vapor Deposition Processes -PVD, Sputtering, iron plating, CVD,	/	15%
	Organic Coatings. Porcelain enameling and other ceramic coatings,		
	Thermal surfacing and Mechanical plating.		
	Powder metallurgy - Characterization of engineering powders,		
	production of metallic powders, conventional pressing and		
	sintering. Alternative pressing and sintering techniques-isostatic pressing		
137	(CIP, HIP and its features), powder injection moulding, powder rolling,	7	150/
11	Notorials and products for pourder motally ray, design considerations	/	15%
	in newder metallurgy		
	Processing of ceramics and cermets. Processing of traditional and new		
	ceramics, processing of cermets		
	SECOND INTERNAL EXAMINATION		
	Rapid prototyping and rapid tooling - Fundamentals of rapid		
	prototyping, Rapid prototyping technologies- stereo lithography – Fused		
X 7	Deposition Moulding – Selective Laser Machining – Laminated Object	7	200/
v	Manufacturing – Solid Base Curing. Selective Laser Melting (SLM) and	/	20%
	Electron Beam Melting (EBM) for metals. Direct manufacturing and		
	rapid tooling.		
	Non-traditional surface finishing processes: Abrasive flow machining		
X 7 X	(AFM), Magnetic abrasive finishing (MAF), Magnetorheological	7	200/
VI	inishing (MKF), Magnetic float polishing (MFP), Magnetorheological	/	20%
	Honing (MRAH) Features and potential applications of these processes		
	END CEMESTED EVAM		

Question Paper Pattern

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks) **Part B**

There should be 2 questions each from module III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks) **Part C**

There should be 3 questions each from module V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Course	Course Name	L-T-P - Credits	Yea	r of uction
MP366	Modern manufacturing Concepts	3-0-0-3	20	16
	Prerequisite : Nil			
Course (Dhiectives:			
• T	o introduce modern trends in casting, methods of manufact	turing com	posite n	naterial
pı	oducts and surface processing methods.		L	
• T	b learn features and applications of powder metallurgy			
• T	o know rapid prototyping methods and rapid tooling	NA A		
• T	o make aware the recent developments in non-conventional sur	face finishing	ng proce	esses.
Syllabus	TECLINIALACIA	AI		
Modern c	asting processes, Modern plastic shaping processes, Polymer n	natrix comp	osite pro	ocesses
and featu	res, Powder metallurgy – processes and mechanisms, Rapid	l prototypin	g metho	ods for
polymer	and metals products, Recent developments in non-traditional su	irface finish	ing proc	cesses.
Expected	outcome:			
The stude	ents will be able to:			
1. K	now the features of various modern casting and plastic forming	, processes	C	1 . 1
11. St	iggest suitable polymer matrix composite process for the	manufactu	re of s	elected
1n	dustrial components.			
111. U	nderstand features of various coating processes for metals and o	ceramics		
	plain the mechanisms involved in powder metallurgy process			
	ustrate the functioning of various rapid prototyping processes	n r0000000		
VI. U Deferer		g processes		
	retead B. H. Octwald Phylins and P. I. Bageman Manufa	cturing Pro	CASSAS	Iohn
	Flow Song 1097	cluing 110		JOIIII
	neys Solls, 1987.			
2. B	ranem. I. Smith, Advanced macming, I.F.S., U.K., 1989.		11 1	
5. JC	lao Faulo Davim, Machining – Fundamentals and recent ad	vances, Ch	I-II AU	vanced
	ikall P. Groover, Eundementals of modern manufacturing	Matoriala	Drocoss	as and
4. IV	stems (4 th Edition) John Wiley and Sons 2010	-wialchiais,	FIDCESS	es allu
5 M	Succide F. A. Plastic Processing Technology Materials Park O	HIO ASM	Int 199	4
6 Se	erope Kalpakijan Manufacturing Engineering and Technology	Third Edi	tion- A	 1dison-
V. S.	Vesley Publication Co. 1995	, Third Edi		acaison
7 5	erope Kalpakijan Steven R Schemid Manufacturing pr	ocesses fo	r Engii	neering
7. S.	aterials Fourth edition Pearson Education 2003	100003503 10	i Engi	leering
111	Course Plan			
	Course I han			End
Modulo	Contonts		Hours	Sem.
Mouule	Contents		110015	Exam
	Advances in casting Newer casting processes - Director	mold and		Marks
	ceramic mold casting, vacuum casting Evaporative patter	m casting		
	ceramic shell investment casting slush casting squeeze of	asting and		
Ι	semisolid metal forming	usung and	7	15%
	Manufacturing processes for plastics: Thermoforming Co	mpression		
	moulding. Transfer moulding. Foam moulding			
	Shaping processes for polymer matrix composites (PMCs):	Materials		
II	for PMCs, Classification of manufacturing processes for	or fiber-	7	15%

	reinforced polymer composites. Combining matrix and reinforcement,		
	Winding Pultrusion Processes		
	Other PMC Shaping Processes-Centrifugal casting tube rolling		
	continuous laminating		
	FIRST INTERNAL EXAMINATION		
	Surface processing operations: Mechanical cleaning and surface		
	treatments- Diffusion and Ion Implantation, Plating Processes-		
TTT	Electroplating and electroless plating, hot dipping. Conversion Coating,	7	150/
111	Vapor Deposition Processes -PVD, Sputtering, iron plating, CVD,	/	15%
	Organic Coatings. Porcelain enameling and other ceramic coatings,		
	Thermal surfacing and Mechanical plating.		
	Powder metallurgy - Characterization of engineering powders,		
	production of metallic powders, conventional pressing and		
	sintering. Alternative pressing and sintering techniques-isostatic pressing		
137	(CIP, HIP and its features), powder injection moulding, powder rolling,	7	150/
11	Notorials and products for pourder motally ray, design considerations	/	15%
	in newder metallurgy		
	Processing of ceramics and cermets. Processing of traditional and new		
	ceramics, processing of cermets		
	SECOND INTERNAL EXAMINATION		
	Rapid prototyping and rapid tooling - Fundamentals of rapid		
	prototyping, Rapid prototyping technologies- stereo lithography – Fused		
X 7	Deposition Moulding – Selective Laser Machining – Laminated Object	7	200/
v	Manufacturing – Solid Base Curing. Selective Laser Melting (SLM) and	/	20%
	Electron Beam Melting (EBM) for metals. Direct manufacturing and		
	rapid tooling.		
	Non-traditional surface finishing processes: Abrasive flow machining		
X 7 X	(AFM), Magnetic abrasive finishing (MAF), Magnetorheological	7	200/
VI	inishing (MKF), Magnetic float polishing (MFP), Magnetorheological	/	20%
	Honing (MRAH) Features and potential applications of these processes		
	END CEMESTED EVAM		

Question Paper Pattern

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks) **Part B**

There should be 2 questions each from module III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks) **Part C**

There should be 3 questions each from module V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Course	Course Name	L-T-P - Credits	Yea	r of uction
MP366	Modern manufacturing Concepts	3-0-0-3	20	16
	Prerequisite : Nil			
Course (Dhiectives:			
• T	o introduce modern trends in casting, methods of manufact	turing com	posite n	naterial
pı	oducts and surface processing methods.		L	
• T	b learn features and applications of powder metallurgy			
• T	o know rapid prototyping methods and rapid tooling	NA I		
• T	o make aware the recent developments in non-conventional sur	face finishing	ng proce	esses.
Syllabus	TECLINIALACIA	AI		
Modern c	asting processes, Modern plastic shaping processes, Polymer n	natrix comp	osite pro	ocesses
and featu	res, Powder metallurgy – processes and mechanisms, Rapid	l prototypin	g metho	ods for
polymer	and metals products, Recent developments in non-traditional su	irface finish	ing proc	cesses.
Expected	outcome:			
The stude	ents will be able to:			
1. K	now the features of various modern casting and plastic forming	, processes	C	1 . 1
11. St	iggest suitable polymer matrix composite process for the	manufactu	re of s	elected
1n	dustrial components.			
111. U	nderstand features of various coating processes for metals and o	ceramics		
	plain the mechanisms involved in powder metallurgy process			
	ustrate the functioning of various rapid prototyping processes	n r0000000		
VI. U Deferer		g processes		
	retead B. H. Octwald Phylins and P. I. Bageman Manufa	cturing Pro	CASSAS	Iohn
	Flow Song 1097	cluing 110		JOIIII
	neys Solls, 1987.			
2. B	ranem. I. Smith, Advanced macming, I.F.S., U.K., 1989.		11 1	
5. JC	lao Faulo Davim, Machining – Fundamentals and recent ad	vances, Ch	I-II AU	vanced
	ikall P. Groover, Eundementals of modern manufacturing	Matoriala	Drocoss	as and
4. IV	stems (4 th Edition) John Wiley and Sons 2010	-wialchiais,	FIDCESS	es allu
5 M	Succide F. A. Plastic Processing Technology Materials Park O	HIO ASM	Int 199	4
6 Se	erope Kalpakijan Manufacturing Engineering and Technology	Third Edi	tion- A	 Idison-
V. S.	Vesley Publication Co. 1995	, Third Edi		acaison
7 5	erope Kalpakijan Steven R Schemid Manufacturing pr	ocesses fo	r Engii	neering
7. S.	aterials Fourth edition Pearson Education 2003	100003503 10	i Engi	leering
111	Course Plan			
	Course I han			End
Modulo	Contonts		Hours	Sem.
Mouule	Contents		110015	Exam
	Advances in casting Newer casting processes - Director	mold and		Marks
	ceramic mold casting, vacuum casting Evaporative patter	m casting		
	ceramic shell investment casting slush casting squeeze of	asting and		
Ι	semisolid metal forming	usung and	7	15%
	Manufacturing processes for plastics: Thermoforming Co	mpression		
	moulding. Transfer moulding. Foam moulding			
	Shaping processes for polymer matrix composites (PMCs):	Materials		
II	for PMCs, Classification of manufacturing processes for	or fiber-	7	15%

	reinforced polymer composites. Combining matrix and reinforcement,		
	Winding Pultrusion Processes		
	Other PMC Shaping Processes-Centrifugal casting tube rolling		
	continuous laminating		
	FIRST INTERNAL EXAMINATION		
	Surface processing operations: Mechanical cleaning and surface		
	treatments- Diffusion and Ion Implantation, Plating Processes-		
TTT	Electroplating and electroless plating, hot dipping. Conversion Coating,	7	150/
111	Vapor Deposition Processes -PVD, Sputtering, iron plating, CVD,	/	15%
	Organic Coatings. Porcelain enameling and other ceramic coatings,		
	Thermal surfacing and Mechanical plating.		
	Powder metallurgy - Characterization of engineering powders,		
	production of metallic powders, conventional pressing and		
	sintering. Alternative pressing and sintering techniques-isostatic pressing		
137	(CIP, HIP and its features), powder injection moulding, powder rolling,	7	150/
11	Notorials and products for pourder motally ray, design considerations	/	15%
	in newder metallurgy		
	Processing of ceramics and cermets. Processing of traditional and new		
	ceramics, processing of cermets		
	SECOND INTERNAL EXAMINATION		
	Rapid prototyping and rapid tooling - Fundamentals of rapid		
	prototyping, Rapid prototyping technologies- stereo lithography – Fused		
X 7	Deposition Moulding – Selective Laser Machining – Laminated Object	7	200/
v	Manufacturing – Solid Base Curing. Selective Laser Melting (SLM) and	/	20%
	Electron Beam Melting (EBM) for metals. Direct manufacturing and		
	rapid tooling.		
	Non-traditional surface finishing processes: Abrasive flow machining		
X 7 X	(AFM), Magnetic abrasive finishing (MAF), Magnetorheological	7	200/
VI	inishing (MKF), Magnetic float polishing (MFP), Magnetorheological	/	20%
	Honing (MRAH) Features and potential applications of these processes		
	END CEMESTED EVAM		

Question Paper Pattern

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks) **Part B**

There should be 2 questions each from module III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks) **Part C**

There should be 3 questions each from module V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Course co	de	Course Name	L-T-P-Credits	Yea Introd	r of uction
MP374		Industrial Hydraulics	3-0-0-3	20	16
Prerequisi	te:	NIL			
Course Ob	jec	tives:		_	
•	То	apply laws of fluid mechanics in hydraulic syst	ems.		
•	То	study the working principle of various compon	ents used in hydrau	lic syster	ms.
•	То	learn design and industrial applications of hydr	aulic circuits.		
Syllabus		$I \vdash (\Box \vdash N \cap \Box \cap O)$	(Δ)		
Introduction	n to	Hydraulic Systems. Basic Components. Symb	ools, Types, classif	ication, p	rinciple
of working	g a	nd constructional details Hydraulic valves,	Hydraulic pumps/	notors/ac	ctuators,
Hydrostatic	с (ransmission Systems, Development of hy	ydraulic circuits,	Applica	tion of
Hydraulics	in i	ndustrial Automation.			
Expected (Jut	come			
The student	ts w			1 0 1	1 1'
1.		The exposure in working principle of various	us components us	ed for h	ydraulic
		The shility to identify various component	and able to a	last one	nomisto
11.		appropriate required for hydroulic systems	s and able to se	lect app	ropriate
;;;		The canability to design hydraulic system for i	ndustrial applicatio	ne	
iv		The ability to understand industrial application	s of hydraulic syste	m	
Text book	-	The ability to understand industrial appreation	s of flydraune syst		
J.	J. F	Pipenger, Industrial Hydraulics, McGraw Hill			
References	5				
1. And	lrev	v A. Parr, Hydraulics and Pneuma <mark>ti</mark> cs, Elsevier	Science and Techn	ology Bo	ooks.
2. H.L	Ste	ewart, Hydraulics and Pneumatics, Taraporewa	la Publication		
3. ISO) - 1	219, Fluid Systems and components, Graphic S	Symbols		
4. Maj	jum	dar S.R, Oil Hydraulic system- Principle and m	aintenance ,Tata N	IcGraw H	Hill
5. Mic	hae	I J, Prinches and Ashby J. G, "Power Hydrauli	cs", Prentice Hall.		
		Course Plan			1
					End
Module		Contents		Hours	sem.
					exam
	TNI	EDODUCTION TO HUDDALLLC DOWE	D. Definition of		marks
	LIN .	roulia system advantages limitations applie	R: Definition of		
т	of	luide Eluide for hydraulie systems, governing	love structure of	6	1504
1	być	raulic control system. Distribution of fluid pow	laws, sulucture of	0	1370
	ene	ray losses in hydraulic systems	ver, 150 symbols,		
+	PI	MPS: Construction and working of Gear num	ins. Vane numps		
	Pis	ton pumps, radial and axial plunger pumps scr	ew pumps, numps,		
	Sel	ection factors for hydraulic Power transmission			
11	AC	CUMULATORS: Types. selection/ de	sign procedure.	8	20%
	apr	lications of accumulators. Types of Inter	sifiers, Pressure		
	swi	tches /sensors, Temperature switches/sensors, l	Level sensors.		

First Internal Exam			
III	HYDRAULIC VALVES: Flow control valves like pressure compensated and non pressure compensated. Directional control valves, two way valves, pressure control valves, venting and relief valves, unloading valves, unloading. Sequence, counter balance and brake valves with applications. Pressure reducing valve like direct and pilot operated.	8	20%
IV	HYDRAULIC ACTUATORS AND MOTORS : Classification cylinder and hydraulic motors, Linear Hydraulic Actuators, single and double acting cylinders and mountings. Calculation of piston velocity, Design considerations for cylinders. Cushioning of cylinders.	5	10%
	Second Internal Exam		
V	DESIGN OF HYDRAULIC CIRCUIT: Selection of different components such as reservoir, various valves, actuators, filters, pumps based on design. Simple reciprocating, Regenerative, Speed control (Meter in, Meter out and bleed off), Sequencing, Synchronization, transverse and feed circuits, circuit for riveting machine, automatic reciprocating, fail safe circuit, counter balance circuit, actuator locking, unloading circuit, motor breaking circuit.	8	20%
VI	HYDRAULICCIRCUITSININDUSTRIALAPPLICATIONS:Hydraulic circuit of typical hydraulic systemssuch as hydraulic press, movable platform of machine tools, truckcranes, copying machines, hydraulic power steering.	7	15%
	End Semester Exam		

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Course	Course Name	-T-P -	Ye	ear of			
MP376	Artificial Intelligence in Manufacturing	3-0-0-3	2	2016			
	Prerequisite : Nil						
Course O	bjectives						
• To provides an elementary understanding of how knowledge and information can be							
processed for creating and maintaining automated manufacturing systems.							
Syllabus	ADT ADDITE IZATA	N 4					
Introducti	on to Artificial Intelligence, Intelligent Manufacturing Sys	tems, I	Knowled	ge base			
systems.	systems. Applications to process planning, flexible manufacturing system, technology based						
systems and group technology. Introduction to Neural Networks and Fuzzy Logic, Applications of							
Artificial	Neural Networks in manufacturing related applications	A.L.					
Expected	outcome.						
The stude	nts will be able to:	6					
• Co	omprehend concepts of Artificial Intelligence and Intelligent Mai	nufactui	ng				
• Ex	plain knowledge base systems and components						
• Demonstrate applications of AI in process planning							
• Discuss applications of AI in flexible manufacturing systems and technology based							
• De	series applications of AL in group technology						
• DC	umerate applications of fuzzy logic and ANN in aspects of man	ifacturi	nσ				
Toyt Do		inacturn	115				
1 ext D0	Andrew Kusiak Intelligent Manufacturing Systems, Prentice Ha	11 1990)				
2. 3. 4.	Ibrahim Zeid. CAD/CAM Theory and Practice, McGraw Hill, Mitsuogen Runwelding, General Algorithms in Engineering De Mohammed Jamshidi, Design and Implementation of Intelliger Systems. Prentice Hall, 1995	1991 esign, Jo at Manu	ohn Wile facturing	y.1997 g			
	Course Plan						
Module	Estd. Contents	/	Hours	End Sem. Exam Marks			
	Introduction to artificial intelligence, history, general application	tions,	7				
Ι	Computer Integrated Manufacturing			15%			
	Manufacturing Communication Systems, Intelligent manufact	uring:					
	System components, system architecture and data flow s	ystem					
	operation	- 4:					
	Components of knowledge base systems, knowledge represent	ation,	7	15%			
II	Knowledge has system. Inference engine knowledge acquire	sition					
	optimization and knowledge base systems for machines	sition,					
	FIRST INTERNAL EXAMINATION						
	Process planning: Feature recognition. machining optimization						
III	Selection and sequencing of machinable volumes.Selection	on of	7	15%			
	process plans in automated manufacturing systems						
117	Flexible machining system: Flexible assembly systems,	tool	7	End Sem. Exam Marks 15% 15%			
1 V	management. Technology based systems: Design of mech	anical	/	13%			

	parts, refinement approach, and model based approach					
	Design of mechanisms, feature based design, and knowledge based					
	design for automated assembly					
SECOND INTERNAL EXAMINATION						
V	Group technology, models and algorithms, cluster analysis method, knowledge based systems for GT Models and algorithms for machine layout, knowledge based systems for machine layout, scheduling, models and algorithms	7	20%			
VI	Application of artificial neural networks, fuzzy logic and genetic algorithms in manufacturing, ANN for tool wear monitoring, fuzzy control of machine tools, Introduction to neural networks, synaptic integration and neuron models, essential vector operators, back propagation algorithms Application of neural networks to process modelling control, Neural network based feed forward active control systems, neural network application to tool condition monitoring in turning machine, condition monitoring in tapping, neural networks in robotics.	7	20%			
END SEMESTER EXAM						

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II

Each question carries 10 marks

Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)