CS302 Design and Analysis of Algorithms 3-1-0-4 2016 Prerequisite: Nil Course Objectives • To introduce the concepts of Algorithm Analysis, Time Complexity, Space Complexity. • To discuss various Algorithm Design Strategies with proper illustrative examples. • • To introduce Complexity Theory. Syllabus Introduction to Algorithm Analysis, Notions of Time and Space Karategies with proper illustrative examples, AVL trees, Red-Black Trees, Union-find algorithms, Graph algorithms, Sraph algorithms, Divide and Conquer, Dynamic Programming, Greedy Strategy, Back Tracking and Branch and Bound, Complexity classes Expected ductome The students will be able to • • • Notiform Suing Divide and Conquer Strategy. • • Solve recurrence equations using Iteration Method, Recurrence Wethod and Master's Theorem, Divide and Conquer Strategy. • • Solve optimization problems using Back Tracking and Branch and Weode Strategy. • • Solve optimization problems using Back Tracking and Nerourelewer analyter solving problems. • • Cassify computational problems into P, NP, NP-Hard and NP-Complex. • • Solve Optimization problems into P, NP, NP-Hard and NP-Complex. • Thomas H. Cormen, Charles E. Le	Course code	Course Name	L-T-P - Credits	Ye Intro	ar of duction		
Prerequisite: Nil Course Objectives • To introduce the concepts of Algorithm Analysis, Time Complexity, Space Complexity. • To discuss various Algorithm Design Strategies with proper illustrative examples. • To introduce Complexity Theory. Syllabus Introduction to Algorithm Analysis, Notions of Time and Space Complexity, Asymptotic Notations, Recurrence Equations and their solutions, Master's Theorem, Divide and Conquer and illustrative examples, AVL trees, Red-Black Trees, Union-find algorithms, Graph algorithms, Divide and Conquer, Dynamic Programming, Greedy Strategy, Back Tracking and Branch and Bound, Complexity classes Expected outcome The students will be able to i. Analyze a given algorithm and express its time and space complexities in asymptotic notations. iii. Design algorithms using Divide and Conquer Strategy. iv. Compare Dynamic Programming and Divide and Conquer Strategies. v. Solve Optimization problems using Greedy strategy. vi. Classify computational problems using Back Tracking and Branch Bound Techniques for solving problems. vi. Classify computational problems into P, NP, NP-Hard and NP-Complete. Text Books 1 Ellis Horowitz, SartajSahni, SanguthevarRajasekaran, Computer Algorithms, Universities Press, 2007 [Modules 3,4,5] 2. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, Pe	CS302	Design and Analysis of Algorithms	3-1-0-4	20	016		
Course Objectives • To introduce the concepts of Algorithm Analysis, Time Complexity, Space Complexity. • To discuss various Algorithm Design Strategies with proper illustrative examples. • To introduce Complexity Theory. Syllabus Introduction to Algorithm Analysis, Notions of Time and Space Complexity, Asymptotic Notations, Recurrence Equations and their solutions, Master's Theorem, Divide and Conquer and illustrative examples, AVL trees, Red-Black Trees, Union-find algorithms, Graph algorithms, Divide and Conquer, Dynamic Programming, Greedy Strategy, Back Tracking and Branch and Bound, Complexity classes Expected outcome The students will be able to i. Analyze a given algorithm and express its time and space complexities in asymptotic notations. ii. Solve recurrence equations using Iteration Method, Recurrence Tree Method and Master's Theorem. iii. Design algorithms using Divide and Conquer Strategies. v. Compare Dynamic Programming and Divide and Conquer Strategies. v. Solve Optimization problems using Greedy strategy. vi. Classify computational problems into P, NP, NP-Hard and NP-Complete. Text Books 1. Ellis Horowitz, SartajSahni, SanguthevarRajasekaran, Computer Algorithms, Universities Press, 2007 [Modules 3,4,5] 2. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, Pearson Education, 1999. 2. Anany Levitin, Introduction to the Design and Analy		Prerequisite: Nil		•			
 To introduce the concepts of Algorithm Analysis, Time Complexity, Space Complexity. To discuss various Algorithm Design Strategies with proper illustrative examples. To introduce Complexity Theory. Syllabus Introduction to Algorithm Analysis, Notions of Time and Space Complexity. Asymptotic Notations, Recurrence Equations and their solutions, Master's Theorem, Divide and Conquer and illustrative examples, AVL trees, Red-Black Trees, Union-find algorithms, Graph algorithms, Divide and Conquer, Dynamic Programming, Greedy Strategy, Back Tracking and Branch and Bound, Complexity classes Expected outcome The students will be able to Analyze a given algorithm and express its time and space complexities in asymptotic notations. Solve recurrence equations using Iteration Method, Recurrence Tree Method and Master's Theorem. Design algorithms using Divide and Conquer Strategy. Compare Dynamic Programming and Divide and Conquer Strategies. Solve Optimization problems using Greedy strategy. Costing problems using Greedy strategy. Design efficient algorithms using Back Tracking and Branch Bound Techniques for solving problems. Classify computational problems into P, NP, NP-Hard and NP-Complete. Text Books Ellis Horowitz, SartajSahni, SanguthevarRajasekaran, Computer Algorithms, Universities Press, 2007 [Modules 3,4,5] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, 2009 [Modules 1,2,6] References Afired V. Aho, John E. Hopcroft and Jeffrey D. Ullman, The Design and Analysis of Computer Algorithms, Pearson Education, 1999. 	Course C	Dbjectives					
 To discuss various Algorithm Design Strategies with proper illustrative examples. To introduce Complexity Theory. Syllabus Introduction to Algorithm Analysis, Notions of Time and Space Complexity, Asymptotic Notations, Recurrence Equations and their solutions, Master's Theorem, Divide and Conquer and illustrative examples, AVL trees, Red-Black Trees, Union-find algorithms, Graph algorithms, Divide and Conquer, Dynamic Programming, Greedy Strategy, Back Tracking and Branch and Bound, Complexity classes Expected outcome The students will be able to Analyze a given algorithm and express its time and space complexities in asymptotic notations. Solve recurrence equations using Iteration Method, Recurrence Tree Method and Master's Theorem. Design algorithms using Divide and Conquer Strategy. Compare Dynamic Programming and Divide and Conquer Strategies. Solve optimization problems using Greedy strategy. Classify computational problems using Greedy strategy. Classify computational problems into P, NP, NP-Hard and NP-Complete. Text Books Ellis Horowitz, SartajSahni, SanguthevarRajasekaran, Computer Algorithms, Universities Press, 2007 [Modules 3,4,5] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, Pearson Education, 1999. Anany Levitin, Introduction to the Design and Analysis of Algorithms, Pearson, 3rd Edition, 2011. Gilles Brassard, Paul Bratley, Fundamentals of Algorithmics, Pearson Education, 1995. Richard E. Neapolitan, Kumarss Naimipour, Foundations of Algorithms using C++ Psuedocode, Second Edition, 1997. 	• <u>T</u>	o introduce the concepts of Algorithm Analysis, Time Comple	exity, Spa	ce Comple	exity.		
To introduce Complexity Theory. Syllabus Introduction to Algorithm Analysis, Notions of Time and Space Complexity, Asymptotic Notations, Recurrence Equations and their solutions, Master's Theorem, Divide and Conquer and illustrative examples, AVL trees, Red-Black Trees, Union-find algorithms, Graph algorithms, Divide and Conquer, Dynamic Programming, Greedy Strategy, Back Tracking and Branch and Bound, Complexity classes Expected outcome The students will be able to i. Analyze a given algorithm and express its time and space complexities in asymptotic notations. ii. Solve recurrence equations using Iteration Method, Recurrence Tree Method and Master's Theorem. iii. Design algorithms using Divide and Conquer Strategy. iv. Compare Dynamic Programming and Divide and Conquer Strategies. v. Solve Optimization problems using Greedy strategy. vi. Design efficient algorithms using Back Tracking and Branch Bound Techniques for solving problems. vii. Classify computational problems into P, NP, NP-Hard and NP-Complete. Text Books 1. Ellis Horowitz, SartajSahni, SanguthevarRajasekaran, Computer Algorithms, Universities Press, 2007 [Modules 3,4,5] 2. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, 2009 [Modules 1,2,6] References 1. Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman, The Design and Analysis of Computer Algorithms, Pearson Education, 1999. 3. Anany Levitin, Introduction to the Design and Analysis of Algorithms, Pearson, 3rd Edition, 2011. 3. Gilles Brassard, Paul Bratley, Fundamentals of Algorithmics, Pearson Education, 1995. 4. Richard E. Neapolitan, Kumarss Naimipour, Foundations of Algorithms using C+++ Psuedocode, Second Edition, 1997. 4. Richard E. Neapolitan, Kumarss Naimipour, Foundations of Algorithms using C++ Psuedocode, Second Edition, 1997.	• To	b discuss various Algorithm Design Strategies with proper illu	istrative ex	xamples.			
Sylabus Introduction to Algorithm Analysis, Notions of Time and Space Complexity, Asymptotic Notations, Recurrence Equations and their solutions, Master's Theorem, Divide and Conquer and illustrative examples, AVL trees, Red-Black Trees, Union-find algorithms, Graph algorithms, Divide and Conquer, Dynamic Programming, Greedy Strategy, Back Tracking and Branch and Bound, Complexity classes Expected outcome The students will be able to i. Analyze a given algorithm and express its time and space complexities in asymptotic notations. iii. Solve recurrence equations using Iteration Method, Recurrence Tree Method and Master's Theorem. iii. Design algorithms using Divide and Conquer Strategy. iv. Compare Dynamic Programming and Divide and Conquer Strategies. v. Solve Optimization problems using Greedy strategy. vi. Design efficient algorithms using Back Tracking and Branch Bound Techniques for solving problems. vii. Classify computational problems into P, NP, NP-Hard and NP-Complete. Text Books 1 1. Ellis Horowitz, SartajSahni, SanguthevarRajasekaran, Computer Algorithms, Universities Press, 2007 [Modules 3,4,5] 2. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, Pearson Education, 1999. 2. Anany Levitin, Introduction to the Design and Analysis of Algorithms, Pearson, 3rd	• 10	o introduce Complexity Theory.					
Indication to Algorithm Anarysts, footons of Time and Space Complexity, symptotic motations, Recurrence Equations and their solutions, Master's Theorem, Divide and Conquer and illustrative examples, AVL trees, Red-Black Trees, Union-find algorithms, Graph algorithms, Divide and Conquer, Dynamic Programming, Greedy Strategy, Back Tracking and Branch and Bound, Complexity classes Expected outcome The students will be able to i. Analyze a given algorithm and express its time and space complexities in asymptotic notations. iii. Solve recurrence equations using Iteration Method, Recurrence Tree Method and Master's Theorem. iiii. Design algorithms using Divide and Conquer Strategy. iv. Compare Dynamic Programming and Divide and Conquer Strategies. v. Solve Optimization problems using Greedy strategy. vi. Design efficient algorithms using Back Tracking and Branch Bound Techniques for solving problems. vii. Classify computational problems into P, NP, NP-Hard and NP-Complete. Text Books 1. Ellis Horowitz, SartajSahni, SanguthevarRajasekaran, Computer Algorithms, Universities Press, 2007 [Modules 3,4,5] 2. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, Pearson Education, 1999. 2. Anany Levitin, Introduction to the Design and Analysis of Algorithms, Pearson, 3rd Edition, 2011. 3. Gilles Brassard, Paul Bratley, Fundamentals of Algorithmics, Pearson Education, 1995. 4. Richard E. Neapolitan, Kumarss Naimipour, Foundations of Algorithms usi	Syllabus Introducti	on to Algorithm Analysis Notions of Time and Space	a Comple	with Ac	umptotic		
Illustrative examples, AVL trees, Red-Black Trees, Union-find algorithms, Graph algorithms, Divide and Conquer, Dynamic Programming, Greedy Strategy, Back Tracking and Branch and Bound, Complexity classes Expected outcome The students will be able to i. Analyze a given algorithm and express its time and space complexities in asymptotic notations. ii. Solve recurrence equations using Iteration Method, Recurrence Tree Method and Master's Theorem. iii. Design algorithms using Divide and Conquer Strategy. iv. Compare Dynamic Programming and Divide and Conquer Strategies. v. Solve Optimization problems using Greedy strategy. vi. Classify computational problems using Greedy strategy. vi. Classify computational problems into P, NP, NP.Hard and NP-Complete. Text Books 1 1. Ellis Horowitz, SartajSahni, SanguthevarRajasekaran, Computer Algorithms, Universities Press, 2007 [Modules 3,4,5] 2. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, 2009 [Modules 1,2,6] References 1 1. Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman, The Design and Analysis of Computer Algorithms, Pearson Education, 1999. 2. Anany Levitin, Introduction to the Design and Analysis of Algorithms, Pearson, 3rd Edition, 2011. 3.<	Notations	Recurrence Equations and their solutions. Master's Theorem	n. Divide	and Cond	mer and		
Divide and Conquer, Dynamic Programming, Greedy Strategy, Back Tracking and Branch and Bound, Complexity classes Expected outcome The students will be able to i. Analyze a given algorithm and express its time and space complexities in asymptotic notations. ii. Solve recurrence equations using Iteration Method, Recurrence Tree Method and Master's Theorem. iii. Design algorithms using Divide and Conquer Strategy. iv. Compare Dynamic Programming and Divide and Conquer Strategies. v. Solve Optimization problems using Greedy strategy. vi. Design efficient algorithms using Back Tracking and Branch Bound Techniques for solving problems. vii. Classify computational problems into P, NP, NP-Hard and NP-Complete. Text Books 1. 1. Ellis Horowitz, SartajSahni, SanguthevarRajasekaran, Computer Algorithms, Universities Press, 2007 [Modules 3,4,5] 2. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, 2009 [Modules 1,2,6] References 1. 1. Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman, The Design and Analysis of Computer Algorithms, Pearson Education, 1999. 2. Anany Levitin, Introduction to the Design and Analysis of Algorithms using C++ Psuedocode, Second Edition, 1997. 4. Richard E. Neapo	illustrativ	e examples, AVL trees, Red-Black Trees, Union-find alg	orithms, (Graph alg	gorithms,		
Bound, Complexity classes Expected outcome The students will be able to i. Analyze a given algorithm and express its time and space complexities in asymptotic notations. ii. Solve recurrence equations using Iteration Method, Recurrence Tree Method and Master's Theorem. iii. Design algorithms using Divide and Conquer Strategy. iv. Compare Dynamic Programming and Divide and Conquer Strategies. v. Solve Optimization problems using Greedy strategy. vi. Design efficient algorithms using Back Tracking and Branch Bound Techniques for solving problems. vii. Classify computational problems into P, NP, NP-Hard and NP-Complete. Text Books 1. Ellis Horowitz, SartajSahni, SanguthevarRajasekaran, Computer Algorithms, Universities Press, 2007 [Modules 3,4,5] 2. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, 2009 [Modules 1,2,6] References I. 1. Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman, The Design and Analysis of Computer Algorithms, Pearson Education, 1999. 2. Anany Levitin, Introduction to the Design and Analysis of Algorithms, Pearson, 3rd Edition, 2011. 3. Gilles Brassard, Paul Bratley, Fundamentals of Algorithmics, Pearson Education, 1995. </td <td>Divide an</td> <td>nd Conquer, Dynamic Programming, Greedy Strategy, Back</td> <td>c Tracking</td> <th>g and Bra</th> <th>anch and</th>	Divide an	nd Conquer, Dynamic Programming, Greedy Strategy, Back	c Tracking	g and Bra	anch and		
Expected outcome The students will be able to i. Analyze a given algorithm and express its time and space complexities in asymptotic notations. ii. Solve recurrence equations using Iteration Method, Recurrence Tree Method and Master's Theorem. iii. Design algorithms using Divide and Conquer Strategy. iv. Compare Dynamic Programming and Divide and Conquer Strategies. v. Solve Optimization problems using Greedy strategy. vi. Design efficient algorithms using Back Tracking and Branch Bound Techniques for solving problems. vii. Classify computational problems into P, NP, NP-Hard and NP-Complete. Text Books 1. Ellis Horowitz, SartajSahni, SanguthevarRajasekaran, Computer Algorithms, Universities Press, 2007 [Modules 3,4,5] 2. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, 2009 [Modules 1,2,6] References 1. Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman, The Design and Analysis of Computer Algorithms, Pearson Education, 1999. 2. Anany Levitin, Introduction to the Design and Analysis of Algorithms, vearson, 3rd Edition, 2011. 3. Gilles Brassard, Paul Bratley, Fundamentals of Algorithmics, Pearson Education, 1995. 4. Richard E. Neapolitan, Kumarss Naimipour, Foundations of Algorithms using C++ Psuedocode, Second Edition, 1997. Course Plan Module Contents	Bound, C	omplexity classes					
Ine students will be able to i. Analyze a given algorithm and express its time and space complexities in asymptotic notations. ii. Solve recurrence equations using Iteration Method, Recurrence Tree Method and Master's Theorem. iii. Design algorithms using Divide and Conquer Strategy. iv. Compare Dynamic Programming and Divide and Conquer Strategies. v. Solve Optimization problems using Greedy strategy. vi. Design efficient algorithms using Back Tracking and Branch Bound Techniques for solving problems. vii. Classify computational problems into P, NP, NP-Hard and NP-Complete. Text Books 1. Ellis Horowitz, SartajSahni, SanguthevarRajasekaran, Computer Algorithms, Universities Press, 2007 [Modules 3,4,5] 2. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, 2009 [Modules 1,2,6] References 1. Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman, The Design and Analysis of Computer Algorithms, Pearson Education, 1999. 2. Anany Levitin, Introduction to the Design and Analysis of Algorithms, verson, 3rd Edition, 2011. 3. Gilles Brassard, Paul Bratley, Fundamentals of Algorithmics, Pearson Education, 1995. 4. Richard E. Neapolitan, Kumarss Naimipour, Foundations of Algorithms using C++ Psuedocode, Second Edition, 1997. Course Plan Hours End K	Expecte	d outcome					
 Analyze a given algorithm and express its time and space complexities in asymptotic notations. Solve recurrence equations using Iteration Method, Recurrence Tree Method and Master's Theorem. Design algorithms using Divide and Conquer Strategy. Compare Dynamic Programming and Divide and Conquer Strategies. Solve Optimization problems using Greedy strategy. Design efficient algorithms using Back Tracking and Branch Bound Techniques for solving problems. Classify computational problems into P, NP, NP-Hard and NP-Complete. Text Books Ellis Horowitz, SartajSahni, SanguthevarRajasekaran, Computer Algorithms, Universities Press, 2007 [Modules 3,4,5] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, 2009 [Modules 1,2,6] References Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman, The Design and Analysis of Computer Algorithms, Pearson Education, 1999. Anany Levitin, Introduction to the Design and Analysis of Algorithms, Pearson, 3rd Edition, 2011. Gilles Brassard, Paul Bratley, Fundamentals of Algorithmics, Pearson Education, 1995. Richard E. Neapolitan, Kumarss Naimipour, Foundations of Algorithms using C++ Psuedocode, Second Edition, 1997. 	The stuc	lents will be able to	complexi	tion in an	umptotio		
 ii. Solve recurrence equations using Iteration Method, Recurrence Tree Method and Master's Theorem. iii. Design algorithms using Divide and Conquer Strategy. iv. Compare Dynamic Programming and Divide and Conquer Strategies. v. Solve Optimization problems using Greedy strategy. vi. Design efficient algorithms using Back Tracking and Branch Bound Techniques for solving problems. vii. Classify computational problems into P, NP, NP-Hard and NP-Complete. Text Books Ellis Horowitz, SartajSahni, SanguthevarRajasekaran, Computer Algorithms, Universities Press, 2007 [Modules 3,4,5] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, 2009 [Modules 1,2,6] References Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman, The Design and Analysis of Computer Algorithms, Pearson Education, 1999. Anany Levitin, Introduction to the Design and Analysis of Algorithms, Pearson, 3rd Edition, 2011. Gilles Brassard, Paul Bratley, Fundamentals of Algorithmics, Pearson Education, 1995. Richard E. Neapolitan, Kumarss Naimipour, Foundations of Algorithms using C++ Psuedocode, Second Edition, 1997. Module Contents	1.	notations	complexi	lues in as	ymptotic		
Master's Theorem. iii. Design algorithms using Divide and Conquer Strategy. iv. Compare Dynamic Programming and Divide and Conquer Strategies. v. Solve Optimization problems using Greedy strategy. vi. Design efficient algorithms using Back Tracking and Branch Bound Techniques for solving problems. vii. Classify computational problems into P, NP, NP-Hard and NP-Complete. Text Books 1. Ellis Horowitz, SartajSahni, SanguthevarRajasekaran, Computer Algorithms, Universities Press, 2007 [Modules 3,4,5] 2. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, 2009 [Modules 1,2,6] References 1. 1. Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman, The Design and Analysis of Computer Algorithms, Pearson Education, 1999. 2. Anany Levitin, Introduction to the Design and Analysis of Algorithms, Pearson, 3rd Edition, 2011. 3. Gilles Brassard, Paul Bratley, Fundamentals of Algorithmics, Pearson Education, 1995. 4. Richard E. Neapolitan, Kumarss Naimipour, Foundations of Algorithms using C++ Psuedocode, Second Edition, 1997. Course Plan Module Contents	ii.	Solve recurrence equations using Iteration Method. Rec	currence '	Tree Met	hod and		
 iii. Design algorithms using Divide and Conquer Strategy. iv. Compare Dynamic Programming and Divide and Conquer Strategies. v. Solve Optimization problems using Greedy strategy. vi. Design efficient algorithms using Back Tracking and Branch Bound Techniques for solving problems. vii. Classify computational problems into P, NP, NP-Hard and NP-Complete. Text Books Ellis Horowitz, SartajSahni, SanguthevarRajasekaran, Computer Algorithms, Universities Press, 2007 [Modules 3,4,5] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, 2009 [Modules 1,2,6] References Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman, The Design and Analysis of Computer Algorithms, Pearson Education, 1999. Anany Levitin, Introduction to the Design and Analysis of Algorithms, Pearson, 3rd Edition, 2011. Gilles Brassard, Paul Bratley, Fundamentals of Algorithmics, Pearson Education, 1995. Richard E. Neapolitan, Kumarss Naimipour, Foundations of Algorithms using C++ Psuedocode, Second Edition, 1997. Course Plan Module Module Contents		Master's Theorem.					
 iv. Compare Dynamic Programming and Divide and Conquer Strategies. v. Solve Optimization problems using Greedy strategy. vi. Design efficient algorithms using Back Tracking and Branch Bound Techniques for solving problems. vii. Classify computational problems into P, NP, NP-Hard and NP-Complete. Text Books Ellis Horowitz, SartajSahni, SanguthevarRajasekaran, Computer Algorithms, Universities Press, 2007 [Modules 3,4,5] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, 2009 [Modules 1,2,6] References Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman, The Design and Analysis of Computer Algorithms, Pearson Education, 1999. Anany Levitin, Introduction to the Design and Analysis of Algorithms, Pearson, 3rd Edition, 2011. Gilles Brassard, Paul Bratley, Fundamentals of Algorithmics, Pearson Education, 1995. Richard E. Neapolitan, Kumarss Naimipour, Foundations of Algorithms using C++ Psuedocode, Second Edition, 1997. Module Module Contents Hours End Sem. Examming and Divide and Conquer Strategies.	iii.	Design algorithms using Divide and Conquer Strategy.					
 v. Solve Optimization problems using Greedy strategy. vi. Design efficient algorithms using Back Tracking and Branch Bound Techniques for solving problems. vii. Classify computational problems into P, NP, NP-Hard and NP-Complete. Text Books Ellis Horowitz, SartajSahni, SanguthevarRajasekaran, Computer Algorithms, Universities Press, 2007 [Modules 3,4,5] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, 2009 [Modules 1,2,6] References Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman, The Design and Analysis of Computer Algorithms, Pearson Education, 1999. Anany Levitin, Introduction to the Design and Analysis of Algorithms, Pearson, 3rd Edition, 2011. Gilles Brassard, Paul Bratley, Fundamentals of Algorithmics, Pearson Education, 1995. Richard E. Neapolitan, Kumarss Naimipour, Foundations of Algorithms using C+++ Psuedocode, Second Edition, 1997. Module Contents Hours End Sem. Example: Module Contents Hours End Sem. Example:	iv.	Compare Dynamic Programming and Divide and Conquer	Strategies				
 Vi. Design efficient algorithms using Back Tracking and Branch Bound Techniques for solving problems. Vii. Classify computational problems into P, NP, NP-Hard and NP-Complete. Text Books Ellis Horowitz, SartajSahni, SanguthevarRajasekaran, Computer Algorithms, Universities Press, 2007 [Modules 3,4,5] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, 2009 [Modules 1,2,6] References Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman, The Design and Analysis of Computer Algorithms, Pearson Education, 1999. Anany Levitin, Introduction to the Design and Analysis of Algorithms, Pearson, 3rd Edition, 2011. Gilles Brassard, Paul Bratley, Fundamentals of Algorithmics, Pearson Education, 1995. Richard E. Neapolitan, Kumarss Naimipour, Foundations of Algorithms using C++ Psuedocode, Second Edition, 1997. Module Contents Hours Flan 	V.	Solve Optimization problems using Greedy strategy.	1 D	1	C		
Noting problems. vii. Classify computational problems into P, NP, NP-Hard and NP-Complete. Text Books 1. Ellis Horowitz, SartajSahni, SanguthevarRajasekaran, Computer Algorithms, Universities Press, 2007 [Modules 3,4,5] 2. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, 2009 [Modules 1,2,6] References 1. Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman, The Design and Analysis of Computer Algorithms, Pearson Education, 1999. 2. Anany Levitin, Introduction to the Design and Analysis of Algorithms, Pearson, 3rd Edition, 2011. 3. Gilles Brassard, Paul Bratley, Fundamentals of Algorithmics, Pearson Education, 1995. 4. Richard E. Neapolitan, Kumarss Naimipour, Foundations of Algorithms using C+++ Psuedocode, Second Edition, 1997. Course Plan Module Contents	V1.	Design efficient algorithms using Back Tracking and Bra	inch Bour	nd Techni	ques for		
Text Books 1. Ellis Horowitz, SartajSahni, SanguthevarRajasekaran, Computer Algorithms, Universities Press, 2007 [Modules 3,4,5] 2. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, 2009 [Modules 1,2,6] References 1. Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman, The Design and Analysis of Computer Algorithms, Pearson Education, 1999. 2. Anany Levitin, Introduction to the Design and Analysis of Algorithms, Pearson, 3rd Edition, 2011. 3. Gilles Brassard, Paul Bratley, Fundamentals of Algorithmics, Pearson Education, 1995. 4. Richard E. Neapolitan, Kumarss Naimipour, Foundations of Algorithms using C++ Psuedocode, Second Edition, 1997. Course Plan Module Contents	vii	Classify computational problems into P NP NP-Hard and 1	NP-Comp	lete			
1. Ellis Horowitz, SartajSahni, SanguthevarRajasekaran, Computer Algorithms, Universities Press, 2007 [Modules 3,4,5] 2. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, 2009 [Modules 1,2,6] References 1. Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman, The Design and Analysis of Computer Algorithms, Pearson Education, 1999. 2. Anany Levitin, Introduction to the Design and Analysis of Algorithms, Pearson, 3rd Edition, 2011. 3. Gilles Brassard, Paul Bratley, Fundamentals of Algorithmics, Pearson Education, 1995. 4. Richard E. Neapolitan, Kumarss Naimipour, Foundations of Algorithms using C++ Psuedocode, Second Edition, 1997. Course Plan Module Module	Text Bo	oks		iete.			
Press, 2007 [Modules 3,4,5] 2. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, 2009 [Modules 1,2,6] References 1. Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman, The Design and Analysis of Computer Algorithms, Pearson Education, 1999. 2. Anany Levitin, Introduction to the Design and Analysis of Algorithms, Pearson, 3rd Edition, 2011. 3. Gilles Brassard, Paul Bratley, Fundamentals of Algorithmics, Pearson Education, 1995. 4. Richard E. Neapolitan, Kumarss Naimipour, Foundations of Algorithms using C++ Psuedocode, Second Edition, 1997. Course Plan Hours Module Contents	1. E	lis Horowitz, SartajSahni, SanguthevarRajasekaran, Comput	ter Algori	thms, Uni	iversities		
 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, 2009 [Modules 1,2,6] References Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman, The Design and Analysis of Computer Algorithms, Pearson Education, 1999. Anany Levitin, Introduction to the Design and Analysis of Algorithms, Pearson, 3rd Edition, 2011. Gilles Brassard, Paul Bratley, Fundamentals of Algorithmics, Pearson Education, 1995. Richard E. Neapolitan, Kumarss Naimipour, Foundations of Algorithms using C++ Psuedocode, Second Edition, 1997. Module Contents End End Sem. Exam Marks 	Pi	ress, 2007 [Modules 3,4,5]					
Algorithms, MIT Press, 2009 [Modules 1,2,6] References 1. Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman, The Design and Analysis of Computer Algorithms, Pearson Education, 1999. 2. Anany Levitin, Introduction to the Design and Analysis of Algorithms, Pearson, 3rd Edition, 2011. 3. Gilles Brassard, Paul Bratley, Fundamentals of Algorithmics, Pearson Education, 1995. 4. Richard E. Neapolitan, Kumarss Naimipour, Foundations of Algorithms using C++ Psuedocode, Second Edition, 1997. Course Plan Hours Module Contents	2. T	nomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, C	lifford Ste	in, Introd	uction to		
References 1. Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman, The Design and Analysis of Computer Algorithms, Pearson Education, 1999. 2. Anany Levitin, Introduction to the Design and Analysis of Algorithms, Pearson, 3rd Edition, 2011. 3. Gilles Brassard, Paul Bratley, Fundamentals of Algorithmics, Pearson Education, 1995. 4. Richard E. Neapolitan, Kumarss Naimipour, Foundations of Algorithms using C++ Psuedocode, Second Edition, 1997. Course Plan End Sem. Exam Marks	A	lgorithms, MIT Press, 2009 [Modules 1,2,6]					
1. Anned V. Ano, John E. Hopfort and Jenney D. Onman, The Design and Analysis of Computer Algorithms, Pearson Education, 1999. 2. Anany Levitin, Introduction to the Design and Analysis of Algorithms, Pearson, 3rd Edition, 2011. 3. Gilles Brassard, Paul Bratley, Fundamentals of Algorithmics, Pearson Education, 1995. 4. Richard E. Neapolitan, Kumarss Naimipour, Foundations of Algorithms using C++ Psuedocode, Second Edition, 1997. Course Plan Module Contents Hours End Sem. Exam Marks		Ces Ifrad V. Abo. John F. Hongroff and Joffray D. Jillman, T.	ha Dasiar	and An	alveie of		
2. Anany Levitin, Introduction to the Design and Analysis of Algorithms, Pearson, 3rd Edition, 2011. 3. Gilles Brassard, Paul Bratley, Fundamentals of Algorithmics, Pearson Education, 1995. 4. Richard E. Neapolitan, Kumarss Naimipour, Foundations of Algorithms using C++ Psuedocode, Second Edition, 1997. Course Plan End Sem. Exam Marks	1. A C	omputer Algorithms Pearson Education 1999	ne Desigi	i aliu Ali	alysis 01		
Edition, 2011. 3. Gilles Brassard, Paul Bratley, Fundamentals of Algorithmics, Pearson Education, 1995. 4. Richard E. Neapolitan, Kumarss Naimipour, Foundations of Algorithms using C++ Psuedocode, Second Edition, 1997. Course Plan Module Contents Hours End Sem. Exam Marks	2. A	nany Levitin, Introduction to the Design and Analysis of	f Algorith	ms, Pear	son, 3rd		
 3. Gilles Brassard, Paul Bratley, Fundamentals of Algorithmics, Pearson Education, 1995. 4. Richard E. Neapolitan, Kumarss Naimipour, Foundations of Algorithms using C++ Psuedocode, Second Edition, 1997. Course Plan Module Contents Hours Find Sem. Exam Marks 	E	dition, 2011.	0	,	,		
4. Richard E. Neapolitan, Kumarss Naimipour, Foundations of Algorithms using C++ Psuedocode, Second Edition, 1997. Course Plan End Module Contents Hours End Sem. Exam Marks	3. G	illes Brassard, Paul Bratley, Fundamentals of Algorithmics, P	earson Ed	ucation, 1	995.		
Module Contents For the formula in t	4. R	4. Richard E. Neapolitan, Kumarss Naimipour, Foundations of Algorithms using C++					
Module Contents Han End Sem. Exam Marks	Psuedocode, Second Edition, 1997.						
Module Contents Hours Sem. Exam Marks		Course Plan	I		End		
	Module	Contents		Hours	Sem. Exam Marks		

I	<i>Introduction to Algorithm Analysis</i> Time and Space Complexity- Elementary operations and Computation of Time Complexity- Best, worst and Average Case Complexities- Complexity Calculation of simple algorithms <i>Recurrence Equations:</i> Solution of Recurrence Equations – Iteration Method and Recursion Tree Methods	04 04	15 %	
Ш	<i>Master's Theorem</i> (Proof not required) – examples, Asymptotic Notations and their properties- Application of Asymptotic Notations in Algorithm Analysis- Common Complexity Functions <i>AVL Trees</i> – rotations, Red-Black Trees insertion and deletion (Techniques only; algorithms not expected). B-Trees – insertion and deletion operations. Sets- Union and find operations on disjoint sets.	05 05	15%	
	FIRST INTERNAL EXAM			
III	<i>Graphs</i> – DFS and BFS traversals, complexity, Spanning trees – Minimum Cost Spanning Trees, single source shortest path algorithms, Topological sorting, strongly connected components.	07	15%	
IV	Divide and Conquer: The Control Abstraction, 2 way Merge sort, Strassen's Matrix Multiplication, Analysis Dynamic Programming : The control Abstraction- The Optimality Principle- Optimal matrix multiplication, Bellman-Ford Algorithm	04 05	15%	
	SECOND INTERNAL EXAM			
V	Analysis, Comparison of Divide and Conquer and Dynamic Programming strategies <i>Greedy Strategy:</i> - The Control Abstraction- the Fractional Knapsack Problem,	02 04	20%	
	Kruskal's Algorithm	03		
VI	Back Tracking: -The Control Abstraction – The N Queen's Problem, 0/1 Knapsack Problem Branch and Bound: Travelling Salesman Problem. Introduction to Complexity Theory :-Tractable and Intractable Problems- The P and NP Classes- Polynomial Time Reductions - The NP- Hard and NP-Complete Classes	03 03 03	20%	
	END SEMESTER EXAM			

2014

- 1. There will be *five* parts in the question paper A, B, C, D, E
- 2. Part A
 - a. Total marks : 12
 - b. <u>Four</u> questions each having <u>3</u> marks, uniformly covering modules I and II; All<u>four</u> questions have to be answered.
- 3. Part B
 - a. Total marks : 18
 - b. <u>*Three*</u> questions each having <u>9</u> marks, uniformly covering modules I and II; <u>*Two*</u> questions have to be answered. Each question can have a maximum of three subparts.
- 4. Part C

- a. Total marks : 12
- b. *Four* questions each having <u>3</u> marks, uniformly covering modules III and IV; All*four* questions have to be answered.
- 5. Part D
 - a. Total marks : 18
 - b. <u>*Three*</u> questions each having <u>9</u> marks, uniformly covering modules III and IV; <u>*Two*</u> questions have to be answered. Each question can have a maximum of three subparts
- 6. Part E
 - a. Total Marks: 40
 - b. <u>Six</u> questions each carrying 10 marks, uniformly covering modules V and VI; *four* questions have to be answered.
 - c. A question can have a maximum of three sub-parts.
- 7. There should be at least 60% analytical/numerical questions.

Course	Course Name	L-T-P Credits	Ye Intro	ar of duction
CS304	COMPILER DESIGN	3-0-0-3	2	016
	Prerequisite: Nil			
Course O	ojectives			
To pro	vide a thorough understanding of the internals of Compiler D	esign.		
Syllabus				
Phases of	compilation, Lexical analysis, Token Recognition, Syntax	analysis,	Bottom	Up and
Top Down	Parsers, Syntax directed translation schemes, Intermediate	Code Gei	neration	, Triples
and Quadr	uples, Code Optimization, Code Generation.	AX		
Expected	Outcome	AL		
The studer	ts will be able to	1 3.6.2		
i. Exp han	lain the concepts and different phases of compilation v dling.	with com	pile tii	ne error
ii. Rep	resent language tokens using regular expressions, context	free gran	nmar a	nd finite
auto	mata and design lexical analyzer for a language.			
iii. Cor	npare top down with bottom up parsers, and develop appro	opriate pa	arser to	produce
pars	e tree representation of the input.			
iv. Ger	erate intermediate code for statements in high level language	÷.		
v. Des	ign syntax directed translation schemes for a given context fr	ee gramn	har.	
vi. App	bly optimization techniques to intermediate code and genera	te machir	ne code	for high
leve	el language program.			
Text Book			T 1	
I. Aho	A. Ravi Sethi and D Ullman. Compilers – Principles Techni	ques and	Tools,	Addison
we	A Dhanaltana Santana Danamaning and Onemating Santana	T-4- M-0	 II	11 0
2. D. I	M.D.namonare, System Programming and Operating Systems,	, I ata MCC	Jraw H	III &
Deference	npany, 1990.			
1 Ker	neth C. Louden, Compiler Construction – Principles and Pra	ctice Cer	unane I	earning
I. Kei Indi	an Edition 2006		igage L	carning
2 Tre	mblay and Sorenson. The Theory and Practice of Compiler W	riting T	ata Mc(Traw
Hill	& Company 1984	, include, inc		Jiuw
	Course Plan	1		
				End
		/ I.		Sem.
Module	Contents		Hours	Exam
	2014			Marks
	Introduction to compilers - Analysis of the source pro-	ogram,		
	Phases of a compiler, Grouping of phases, compiler writing	g tools		
	– bootstrapping		07	
Ι	Lexical Analysis:		07	15%
	The role of Lexical Analyzer, Input Buffering, Specificat	ion of		
	Recognition of Tokens.			
	Syntax Analysis:			
	Review of Context-Free Grammars - Derivation trees and	Parse		
II	Trees, Ambiguity.		06	15%
	Top-Down Parsing: Recursive Descent parsing, Pred	lictive		
	parsing, LL(1) Grammars.			

FIRST INTERNAL EXAM				
ш	Bottom-Up Parsing: Shift Reduce parsing – Operator precedence parsing (Concepts only) LR parsing – Constructing SLR parsing tables, Constructing, Canonical LR parsing tables and Constructing LALR parsing tables.	07	15%	
IV	Syntax directed translation:Syntax directed translations, Bottom- up evaluation of S- attributed definitions, L- attributed definitions, Top-down translation, Bottom-up evaluation of inherited attributes.Type Checking :Type systemsSpecification of a simple type checker	08	15%	
SECOND INTERNAL EXAM				
V	Run-Time Environments:Source Language issues, Storage organization, Storage- allocation strategies.Intermediate Code Generation (ICG):Intermediate languages – Graphical representations, Three- Address code, Quadruples, Triples. Assignment statements, Boolean expressions.	07	20%	
VI	Code Optimization:Principal sources of optimization, Optimization of Basic blocks Code generation: Issues in the design of a code generator. The target machine, A simple code generator.	07	20%	
END SEMESTER EXAM				

- 1. There will be *five* parts in the question paper A, B, C, D, E
- 2. Part A
- b.. *Four* questions each having <u>3</u> marks, uniformly covering modules I a. Total marks : 12 and II; Allfour questions have to be answered.
- 3. Part B
- b. <u>Three</u> questionseach having <u>9</u> marks, uniformly covering modules I a. Total marks : 18 and II; Two questions have to be answered. Each question can have a maximum of three subparts. 2014
- 4. Part C
- b. *Four* questions each having <u>3</u> marks, uniformly covering modules a. Total marks : 12 III and IV; All *four* questions have to be answered.
- 5. Part D

b. *Three* questions each having <u>9</u> marks, uniformly covering modules a. Total marks : 18 III and IV; Two questions have to be answered. Each question can have a maximum of three subparts

- 6. Part E
- b. Total Marks: 40 b. Six questions each carrying 10 marks, uniformly covering modules V and VI; four questions have to be answered.
- c. A question can have a maximum of three sub-parts.
- 7. There should be at least 60% analytical/numerical questions.

Course code	Course Name	L-T-P - Credits	Ye Intro	ar of duction	
CS306	Computer Networks	3-0-0-3	2	016	
	Prerequisite: Nil				
Course O	ojectives				
• To bui	d an understanding of the fundamental concepts of computer	networkin	ng.		
• To intr	oduce the basic taxonomy and terminology of computer netwo	orking.			
• To intr	oduce advanced networking concepts.				
Syllabus Concent of	Flowering I AN toobhologies (Ethernot) Flow and error con	tual taahn	ionog or	vitabina	
IPv4/IPv6	routers and routing algorithms (distance vector link state	TCP/I	DP and	sockets	
congestion	control Application layer protocols), 10170		SUCKCIS,	
Expected	Outcome				
The studer	ts will be able to				
i. Vis	ualise the different aspects of networks, protocols and networ	k design i	models.		
ii. Exa	amine various Data Link layer design issues and Data Link pro	otocols.			
iii. An	alyse and compare different LAN protocols.				
iv. Co	mpare and select appropriate routing algorithms for a network	•			
v. Exa	amine the important aspects and functions of network la	ayer, tran	nsport la	yer and	
app	lication layer in internetworking.				
1 ext Boo	KS draw S. Tananhaum, Computer Natworks, 4/a, DHI				
1. All 2. Be	urew S. Tanendaum, Computer Networks, 4/e, FHI.	/e Tata M	CGraw I		
2. DC. 3. Lai	ry L. Peterson & Bruce S. Dave. Computer Networks-A Syste	ems Annr	oach 5/e	· 1111.	
J. La	rgan Kaufmann. 2011.		ouen, 570	,	
Reference	es				
1. Fre	d Halsall, Computer Networking and the Internet, 5/e.				
2. Jan	nes F. Kurose, Keith W. Ross, Computer Networking: A Top-	Down Ap	proach,	6/e.	
3. Ke	shav, An Engineering Approach to Computer Networks, Addi	son Wesl	ey, 1998		
4. Re	quest for Comments (RFC) Pages - IETF -https://www.ietf.org	g/rfc.html			
5. W.	Richard Stevens. TCP/IP Illustrated volume 1, Addison-Wesl	ley, 2005.			
6. W1	lliam Stallings, Computer Networking with Internet Protocols	, Prentice	-Hall, 20	04.	
	Course Plan				
				End	
				Sem.	
Module	Contents		Hours	Exam	
				Marks	
	Introduction - Uses - Network Hardware - LAN - MAN -	WAN,			
т	Internetworks - Network Software - Protocol hierarchies -	Design	07	15%	
-	issues for the layers – Interface & Service – Service Prin	nitives.	07	10 /0	
	Reterence models – OSI – TCP/IP.	4.0.0			
	Data Link layer Design Issues – Flow Control and	ARQ	ARQ MAC		
TT	sub layer IEEE 802 EOD LANG & MANG IEEE 802 2	MAC 802 4			
11	SUU 1ayer - IEEE 002 FUK LAINS & MAINS, IEEE 802.3, 802 5 Bridges - Switches High Speed I ANg Cigshit Et	002.4, hernet	00	13%0	
	Wireless LANs - $802.11 \text{ a/h/}\sigma/n 802.15 \text{ PPP}$	nernet.			
	FIRST INTERNAL EXAMINATION				
FINDI INTERNAL EXAMINATION					

III	Network layer – Routing – Shortest path routing, Flooding, Distance Vector Routing, Link State Routing, RIP, OSPF, Routing for mobile hosts.	07	15%	
IV	Congestion control algorithms – QoS. Internetworking – Network layer in internet. IPv4 - IP Addressing – Classless and Classfull Addressing. Sub-netting.	07	15%	
SECOND INTERNAL EXAMINATION				
V	Internet Control Protocols – ICMP, ARP, RARP, BOOTP. Internet Multicasting – IGMP, Exterior Routing Protocols – BGP. IPv6 – Addressing – Issues, ICMPv6.	07	20%	
VI	Transport Layer – TCP & UDP. Application layer –FTP, DNS, Electronic mail, MIME, SNMP. Introduction to World Wide Web.	07	20%	
END SEMESTER EXAM				

- 1. There will be *five* parts in the question paper A, B, C, D, E
- 2. Part A
 - a. Total marks : 12
 - b. *Four* questions each having <u>3</u> marks, uniformly covering modules I and II;All*four* questions have to be answered.
- 3. Part B
 - a. Total marks : 18
 - b. <u>Three</u> questions each having $\underline{9}$ marks, uniformly covering modules I and II; <u>Two</u> questions have to be answered. Each question can have a maximum of three subparts.
- 4. Part C
 - a. Total marks : 12
 - b. <u>Four</u> questions each having <u>3</u> marks, uniformly covering modules III and IV; All<u>four</u> questions have to be answered.
- 5. Part D
 - a. Total marks : 18
 - b. <u>*Three*</u> questions each having <u>9</u> marks, uniformly covering modules III and IV; <u>*Two*</u> questions have to be answered. Each question can have a maximum of three subparts
- 6. Part E
 - a. Total Marks: 40
 - b. <u>Six</u> questions each carrying 10 marks, uniformly covering modules V and VI; <u>four</u> questions have to be answered.
 - c. A question can have a maximum of three sub-parts.
- 7. There should be at least 60% analytical/numerical questions.

Course	Course Name	L-T-P-	Year of
code		Credits	Introduction
CS308	Software Engineering and Project Management	3-0-0-3	2016

Pre-requisite: Nil

Course Objectives

- To introduce the fundamental concepts of software engineering.
- To build an understanding on various phases of software development.
- To introduce various software process models.

Syllabus

Introduction to software engineering, Software process models, Software development phases, Requirement analysis, Planning, Design, Coding, Testing, Maintenance.

Expected Outcome

The students will be able to

- i. Identify suitable life cycle models to be used.
- ii. Analyze a problem and identify and define the computing requirements to the problem.
- iii. Translate a requirement specification to a design using an appropriate software engineering methodology.
- iv. Formulate appropriate testing strategy for the given software system.
- v. Develop software projects based on current technology, by managing resources economically and keeping ethical values.

References

- 1. Ian Sommerville, Software Engineering, University of Lancaster, Pearson Education, Seventh edition, 2004.
- 2. K. K.Aggarwal and Yogesh Singh, Software Engineering, New age International Publishers, Second edition, 2005.
- 3. Roger S. Pressman, Software Engineering : A practitioner's approach, McGraw Hill publication, Eighth edition, 2014
- 4. S.A. Kelkar, Software Project Management: A concise study, PHI, Third edition, 2012.
- 5. Walker Royce, Software Project Management : A unified frame work, Pearson Education, 1998

Module	Contents	Hours	End Sem. Exam Marks
Ι	Introduction to software engineering- scope of software	07	15%

	engineering – historical aspects, economic aspects, maintenance aspects, specification and design aspects, team programming aspects. Software engineering a layered technology – processes, methods and tools. Software process models – prototyping models, incremental models, spiral model, waterfall model.			
п	Process Framework Models: Capability maturity model (CMM), ISO 9000. Phases in Software development – requirement analysis- requirements elicitation for software, analysis principles, software prototyping, specification.	06	15%	
	FIRST INTERNAL EXAM			
III	Planning phase – project planning objective, software scope, empirical estimation models- COCOMO, single variable model, staffing and personal planning. Design phase – design process, principles, concepts, effective modular design, top down, bottom up strategies, stepwise refinement.	07	15%	
IV	Coding – programming practice, verification, size measures, complexity analysis, coding standards. Testing – fundamentals, white box testing, control structure testing, black box testing, basis path testing, code walk-throughs and inspection, testing strategies-Issues, Unit testing, integration testing, Validation testing, System testing.	07	15%	
	SECOND INTERNAL EXAM			
v	Maintenance-Overview of maintenance process, types of maintenance. Risk management: software risks - risk identification-risk monitoring and management. Project Management concept: People – Product-Process-Project.	07	20%	
VI	Project scheduling and tracking: Basic concepts-relation between people and effort-defining task set for the software project-selecting software engineering task Software configuration management: Basics and standards User interface design - rules. Computer aided software engineering tools - CASE building blocks, taxonomy of CASE tools, integrated CASE environment.	08	20%	
END SEMESTER EXAM				

- 1. There will be *five* parts in the question paper A, B, C, D, E
- 2. Part A
 - a. Total marks : 12
 - b. *Four* questions each having <u>3</u> marks, uniformly covering modules I and II;

All*four* questions have to be answered.

- 3. Part B
 - a. Total marks: 18
 - b. <u>*Three*</u> questions each having <u>9</u> marks, uniformly covering modules I and II; <u>*Two*</u> questions have to be answered. Each question can have a maximum of three subparts.
- 4. Part C
 - a. Total marks : 12
 - b. <u>Four</u> questions each having <u>3</u> marks, uniformly covering modules III and IV; All<u>four</u> questions have to be answered.
- 5. Part D
 - a. Total marks : 18
 - b. <u>*Three*</u> questions each having <u>9</u> marks, uniformly covering modules III and IV; <u>*Two*</u> questions have to be answered. Each question can have a maximum of three subparts
- 6. Part E
 - a. Total Marks: 40
 - b. <u>Six</u> questions each carrying 10 marks, uniformly covering modules V and VI; <u>four</u> questions have to be answered.
 - c. A question can have a maximum of three sub-parts.
- 7. There should be at least 60% analytical/numerical questions.

Course c	ode	Course Name	L-T-P - Credit	S Int	Year of
HS300)	Principles of Management	3-0-0-3		2016
Prerequis	site :	Nil	• • • •		
Course O	bied	tives			
• To	o dev	elop ability to critically analyse and evaluat	e a variety of mana	agement pr	actices in
the	e cor	temporary context;	•	0 1	
• To	o und	erstand and apply a variety of management	and organisational	theories in	n practice;
• To	be a	ble to mirror existing practices or to genera	te their own innov	ative mana	igement
CO	mpe	tencies, required for today's complex and glo	obal workplace;		
• To	be a	ble to critically reflect on ethical theories an	nd social responsib	ility ideol	ogies to
C II I	eate	sustainable organisations.			
Syllabus		and functions of a management	It and its asiance	and ant m	
Definition	l, IO ont	es and functions of a manager, manageme	titive advantage	and art p	erspectives,
innovation	em n F	arly contributors and their contributions t	o the field of me	nagement	Corporate
Social R	esno	nsibility Planning Organizing Staffing	and HRD fun	ctions Le	eading and
Controllin	lg.	Decision making under certainty, uncert	ainty and risk.	creative n	rocess and
innovation	n inv	olved in decision making.		r r	
Expecte	d ou	tcome.			
A studen	ıt <mark>w</mark> h	o has undergone this course would be able t	0		
	i.	manage people and organisations			
i	i.	critically analyse and evaluate management	t theories and pract	tices	
ii	i.	plan and make decisions for organisations			
iv	v.	do staffing and related HRD functions			
Text Bo	ok:				. 10.1
Harold K	Soon	tz and Heinz Weihrich, Essentials of Manag	<i>gement</i> , McGraw H	IIII Compa	nies, 10th
Edition.					
Keleren	$\frac{1}{1}$	Doft New and Management 11th Edition	Congogo Looming		
	$\frac{1}{2}$	Griffin Management Principles and Appli	cations 10th Editic	n Cenga	e Learning
	2. 3	Heinz Weirich Mark V Cannice and Harol	d Koontz <i>Manage</i>	ment a G	lobal
	5.	Innovative and Entrepreneurial Perspective	e. McGraw Hill Ed	lucation. 1	4th Edition
	4.	Peter F Drucker, The Practice of Managem	ent, McGraw Hill,	New Yorl	ζ
	5.	Robbins and Coulter, Management, 13th Ed	dition, 2016, Pears	on Educati	on
Course Plan					
Module		Contents		Hours	Sem. Exam Marks
		2011			
	Int	roduction to Management: definitions, man	agerial roles and		
	fur	ctions; Science or Art perspectives- Extern	nal environment-		
I	glo	bal, innovative and entrepreneurial	perspectives of		
	Ma	nagement (3 Hrs.)– Managing people and	organizations in	6	
	the	context of New Era- Managing for compet	itive advantage -		1.50
	the	Challenges of Management (3 Hrs.)			15%

	Early Contributions and Ethics in Management: Scientific			
	Management- contributions of Taylor, Gilbreths, Human			
	Relations approach-contributions of Mayo, McGregor's			
II	Theory, Ouchi's Theory Z (3 Hrs.) Systems Approach, the			
	Contingency Approach, the Mckinsey 7-S Framework			
	Corporate Social responsibility- Managerial Ethics. (3 Hrs)			
		6	15%	
	FIRST INTERNAL EXAMINATION			
	A DI A RIDI II KALAM	1		
Ш	Planning: Nature and importance of planning, -types of plans	V1		
111	(3 Hrs.)- Steps in planning, Levels of planning - The Planning	6	15%	
	Process. – MBO (3 Hrs.).			
	Organising for decision making: Nature of organizing,	. See a		
	organization levels and span of control in management			
	Organisational design and structure –departmentation, line and			
IV	staff concepts (3 Hrs.) Limitations of decision making-			
	Evaluation and selecting from alternatives- programmed and	6	15%	
	non programmed decisions - decision under certainty,			
	uncertainty and risk-creative process and innovation (3 Hrs.)			
	SECOND INTERNAL EXAMINATION			
	Staffing and related HRD Functions: definition,			
	Empowerment, staff – delegation, decentralization and			
	recentralisation of authority – Effective Organizing and			
V	culture-responsive organizations –Global and entrepreneurial			
•	organizing (3 Hrs.) Manager inventory chart-matching person	9	20%	
	with the job-system approach to selection (3 Hrs.) Job design-			
	skills and personal characteristics needed in managers-			
	selection process, techniques and instruments (3 Hrs.)			
	Leading and Controlling: Leading Vs Managing – Trait			
	approach and Contingency approaches to leadership -			
	Dimensions of Leadership (3 Hrs.) - Leadership Behavior and			
VI	styles – Transactional and Transformational Leadership (3	0	2004	
	Hrs.) Basic control process- control as a feedback system –	9	20%	
	Feed Forward Control – Requirements for effective control –			
	control techniques – Overall controls and preventive controls –			
	Global controlling (3 Hrs.)			
END SEMESTER EXAM				

Max. marks: 100, Time: 3 hours. The question paper shall consist of three parts

Part A: 4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)
Part B: 4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)
Part C: 6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: In all parts, each question can have a maximum of four sub questions, if needed.

Course	Course Name	L-T-P-	Year of
code		Credits	Introduction
CS362	Computer Vision	3-0-0-3	2016

Pre-requisite: NIL

Course Objectives

- To build an understanding on detailed models of image formation.
- To expose the students to image feature detection and matching.
- To introduce fundamental algorithms for pattern recognition.
- To introduce various classification techniques.
- To expose the students to various structural pattern recognition and feature extraction techniques.

Syllabus

Image formation and Image model with Components of a vision system, Multiple images and the Geometry of multiple views, High level vision, Basics of pattern recognition, Linear discriminant based classifiers and tree classifiers, Unsupervised Methods, Recent Advances in Pattern Recognition.

Expected Outcome

The students will be able to

- i. Appreciate the detailed models of image formation.
- ii. Analyse the techniques for image feature detection and matching.
- iii. Apply various algorithms for pattern recognition.
- iv. Examine various clustering algorithms.
- v. Analyze structural pattern recognition and feature extraction techniques.

Text Books:

- 1. Bernd Jahne and Horst HauBecker, Computer vision and Applications, Academic press, 2000.
- 2. David A. Forsyth & Jean Ponce, Computer vision A Modern Approach, Prentice Hall, 2002.

References

- 1. C. M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.
- 2. R. O. Duda, P. E. Hart and D. G. Stork, Pattern Classification, John Wiley, 2001.
- 3. Richard Hartley and Andrew Zisserman, Multiple View Geometry in Computer Vision, Second Edition, Cambridge University Press, 2004.
- 4. S. Theodoridis and K. Koutroumbas, Pattern Recognition, 4th Ed., Academic Press, 2009.

COURSE PLAN

Module Contents Hour	End Sem. Exam Marks
----------------------	------------------------------

I	Image formation and Image model- Components of a vision system- Cameras- camera model and camera calibration- Radiometry- Light in space- Light in surface - Sources, shadows and shading.	06	15%
п	Multiple images-The Geometry of multiple views- Stereopsis- Affine structure from motion- Elements of Affine Geometry Affine structure and motion from two images- Affine structure and motion from multiple images- From Affine to Euclidean images.	07	15%
	FIRST INTERNAL EXAM	6	
Ш	High level vision- Geometric methods- Model based vision- Obtaining hypothesis by pose consistency, pose clustering and using Invariants, Verification.	07	15%
IV	 Introduction to pattern and classification, supervised and unsupervised learning, Clustering Vs classification, Bayesian Decision Theory- Minimum error rate classification Classifiers, discriminant functions, decision surfaces- The normal density and discriminant-functions for the Normal density. 		15%
	SECOND INTERNAL EXAM		
V	Linear discriminant based classifiers and tree classifiers Linear discriminant function based classifiers- Perceptron- Minimum Mean Squared Error (MME) method, Support Vector machine, Decision Trees: CART, ID3.	07	20%
VI	Unsupervised Methods Basics of Clustering; similarity / dissimilarity measures; clustering criteria. Different distance functions and similarity measures, K-means algorithm. Recent Advances in Pattern Recognition Neural network structures for pattern recognition, Pattern classification using Genetic Algorithms.	08	20%
	END SEMESTER EXAM		

- 1. There will be *five* parts in the question paper A, B, C, D, E
- 2. Part A
 - a. Total marks : 12
 - b. <u>Four</u> questions each having <u>3</u> marks, uniformly covering modules I and II; All<u>four</u> questions have to be answered.
- 3. Part B
 - a. Total marks : 18
 - b. <u>Three</u>questions each having <u>9</u> marks, uniformly covering modules I and II;

 $T_{\underline{wo}}$ questions have to be answered. Each question can have a maximum of three subparts.

- 4. Part C
 - a. Total marks : 12
 - b. <u>Four</u> questions each having <u>3</u> marks, uniformly covering modules III and IV; All<u>four</u> questions have to be answered.
- 5. Part D
 - a. Total marks : 18
 - <u>Three</u>questions each having <u>9</u> marks, uniformly covering modules III and IV; <u>Two</u> questions have to be answered. Each question can have a maximum of three subparts
- 6. Part E
 - a. Total Marks: 40
 - b. <u>Six</u> questions each carrying 10 marks, uniformly covering modules V and VI; four questions have to be answered.
 - c. A question can have a maximum of three sub-parts.
- 7. There should be at least 60% analytical/numerical questions.

Course code	Course Name	L-T-P - Credits	Yea	ar of duction
CS364	Mobile Computing	3-0-0-3	2	016
Pre-requi	site: CS307 Data Communication			
Course O	bjectives			
• To	impart basic understanding of the wireless communication sys	stems.		
• To	expose students to various aspects of mobile and ad-hoc netwo	orks.		
Syllabus				
Mobile C	omputing Application and Services, Mobile Computing	Architec	ture, E	merging
Technolog	ies, Intelligent Networks and Internet, Wireless LAN, MA	C layer	routing,	Mobile
transport l	ayer Security Issues in mobile computing.	AT		
Expected	Outcome	AL		
Student is	able to			
1. Ex	plain various Mobile Computing application, services and arch	itecture.		
2. Un	derstand various technology trends for next generation cellular	r wireless	network	
3. De	scribe protocol architecture of WLAN technology.			
4. Un	derstand Security Issues in mobile computing.			
Text Book	is			
1. As	oke K. Talukder, Hasan Ahmad, Mobile Computing Technolog	gy- Applic	cation ar	nd
Sei	vice Creation, 2 nd Edition, McGraw Hill Education.	2000		
2. Joc	then Schiller, Mobile Communications, Pearson Education Asi	a, 2008.	1 20	15
3. JOI	latinan Rodriguez, Fundamentals of 5G Mobile Networks, Wi	ley Publis	sners, 20	15 1. N
4. In	eodore S. Rappaport, wireless Communications Principles and	i Practice,	2/e, PH	I, New
Deference	im, 2004.			
	s draw S. Tananhaum, Computer Networks, DHI, Third adition	2003		
1. All	Course Plan	2003.		
	Course Flan			Fnd
				Sem
Module	Contents]	Hours	Exam
		1		Marks
	Introduction to mobile computing, Middleware and Gat	teways.		
-	Application and services. Internet-Ubiquitous ne	tworks.	0.6	1 = 0 (
l	Architecture and three-tier architecture for Mobile Com	puting.	06	15%
	Design consideration for Mobile Computing.	1 0,		
	Spread spectrum – Direct sequence, Frequency hoping. M	<i>A</i> edium		
	Access Control - SDMA, FDMA, TDMA, CDMA, C	Cellular		
	concepts- channel assignment strategy- hand off strategy in	nterface		
п	and system capacity- improving coverage and capacity in o	cellular	06	150/
11	system, Satellite Systems-GEO, LEO, MEO. W	Vireless	UU	1570
	Communication Systems- Telecommunication Systems-	GSM-		
	GSM services & features, architecture -DECT featu	res &		
	characteristics, architecture.			
	FIRST INTERNAL EXAM	<u> </u>		
	Wireless LANS: Wireless LAN Standards - IEEE 802 P	rotocol		
	Architecture, IEEE 802.11 System Architecture, P	rotocol		
III	Architecture & Services, Cellular Networks: Channel allo	ocation,	07	15%
	multiple access, location management, Handoffs.			
	MAC Layer & Management, Routing - Classification of F	Routing		

	Algorithms, Algorithms such as DSR, AODV, DSDV, Mobile		
	Agents, Service Discovery. Mobile internet mobile network layer mobile IP-dynamic host		
	configuration protocol-, mobile transport layer-implications of TCP		
IV	on mobility-indirect TCP-snooping TCP- mobile TCP transmission-	07	15%
	selective retransmission, Transaction oriented TCP- Support for		
	mobility-file systems-WAP.		
	SECOND INTERNAL EXAM		
	Mobile Transport Layer - Conventional TCP/IP Protocols, Indirect		
	TCP, Snooping TCP, Mobile TCP, Other Transport Layer Protocols		
V	for Mobile Networks.		20%
·	Protocols and Platforms for Mobile Computing - WAP, Bluetooth,		_0,0
	XML, J2ME, JavaCard, PalmOS, Linux for Mobile Devices,		
	Security issues in mobile computing Information Security		
	Components of Information Security Next Concretion Networks		
VI	LTE Architecture & Interface ITE radio planning and tools 5G	08	20%
V I	architecture MIMO Super core concept Features and Application	00	20 /0
	Case Study – Setting up anadhoc network system, LiFi		
	END SEMESTER EXAM		I

- 1. There will be *five* parts in the question paper A, B, C, D, E
- 2. Part A
 - a. Total marks : 12
 - b. <u>Four</u> questions each having <u>3</u> marks, uniformly covering modules I and II; All<u>four</u> questions have to be answered.

3. Part B

- a. Total marks : 18
- b. <u>*Three*</u>questions each having <u>9</u> marks, uniformly covering modules I and II; <u>*Two*</u> questions have to be answered. Each question can have a maximum of three subparts.

11

2014

4. Part C

- a. Total marks : 12
- b. <u>Four</u>questions each having <u>3</u> marks, uniformly covering modules III and IV; All<u>four</u> questions have to be answered.
- 5. Part D
 - a. Total marks : 18
 - b. <u>*Three*</u> questions each having <u>9</u> marks, uniformly covering modules III and IV; <u>*Two*</u> questions have to be answered. Each question can have a maximum of three subparts
- 6. Part E
 - a. Total Marks: 40
 - b. <u>Six</u> questions each carrying 10 marks, uniformly covering modules V and VI; four questions have to be answered.
 - c. A question can have a maximum of three sub-parts.

Course	e Course Name	L-T-P Crodits	Yea	nr of Juction	
CS366	CS366 Natural language processing 3-0-0-3				
	Prerequisite: Nil		_0		
Course (• T • T	Dbjectives o introduce the fundamentals of Language processing from th o discuss various issues those make natural language processing o discuss some applications of Natural Language Processing (e algorith ing a hard (NLP).	mic view task.	vpoint.	
Syllabus Levels of Processin (NLP).	⁵ Language Analysis, Syntax, Semantics and Pragmatics of National Systems and Approaches to solutions, Applications of National Systems and Systems	atural Lan tural Lang	iguage, L guage Pr	anguage	
Expected The stude 1. ap 2. de 3. de	d Outcome ent able to opreciate the fundamental concepts of Natural Language Proc esign algorithms for NLP tasks. evelop useful systems for language processing and related tas rocessing.	essing. sks involv	ing text		
Text Boo 1. D 2. Ja C C	oks Jurafsky and J. H. Martin, Speech and Language Processing mes Allen, Natural Language Understanding, 2e, The Benja ompany Inc., Redwood City, CA.	, Prentice min/Cum	Hall Ind mings Pu	ia, 2000 ıblishing	
1. C 2. R 3. U	harniak, Eugene, Introduction to Artificial intelligence, Addis icardo Baeza-Yates and Berthier Ribeiro-Neto, Moder ddison-Wesley, 1999. S. Tiwary and Tanveer Siddiqui, Natural Language Pr etrieval, Oxford University Press, 2008.	son-Wesle n Inform ocessing	ey, 1985. nation R and Info	Retrieval, ormation	
	Course Plan				
Module	Contents Estd.		Hours	End Sem. Exam Marks	
Ι	Introduction to Natural Language Understanding- Le language analysis- Syntax, Semantics, Pragmatics. Linguistic Background- An Outline of English Syntax.	vels of	8	15%	
II	Lexicons, POS Tagging, Word Senses. Grammars and Parsing- Features, Agreement and Aug Grammars.	gmented	7	15%	
	FIRST INTERNAL EXAM				
III	Grammars for Natural Language, Parsing methods and Effic Parsing. Ambiguity Resolution- Statistical Methods. Probabilistic Free Grammar.	eient Context	9	15%	
IV	Semantics and Logical Form: Linking Syntax and Sen Ambiguity Resolution- other Strategies for Semantic Interpre- Scoping and the Interpretation of Noun Phrases.	mantics- retation-	6	15%	
• • 7	SECOND INTERNAL EXAM		o	300/	
I V	EXPLOSED IN TERMINAL AND REASONING-	iscourse	ð	20%	

	Context and Reference- Using World Knowledge- Discourse		
	Structure- Defining a Conversational Agent.		
X7	Applications- Machine Translation, Information Retrieval and	4	200/
V I	Extraction, Text Categorization and Summarization.	4	20%
END SEMESTER EXAM			

- 1. There will be *five* parts in the question paper A, B, C, D, E
- 2. Part A
 - a. Total marks : 12
 - b. <u>Four</u> questions each having <u>3</u> marks, uniformly covering modules I and II; All<u>four</u> questions have to be answered.
- 3. Part B
 - a. Total marks : 18
 - b. <u>*Three*</u> questions each having <u>9</u> marks, uniformly covering modules I and II; <u>*Two*</u> questions have to be answered. Each question can have a maximum of three subparts.
- 4. Part C
 - a. Total marks : 12
 - b. *Four* questions each having <u>3</u> marks, uniformly covering modules III and IV; All*four* questions have to be answered.
- 5. Part D
 - a. Total marks : 18
 - b. <u>*Three*</u> questions each having <u>9</u> marks, uniformly covering modules III and IV; <u>*Two*</u> questions have to be answered. Each question can have a maximum of three subparts.
- 6. Part E
 - a. Total Marks: 40
 - b. <u>Six</u> questions each carrying 10 marks, uniformly covering modules V and VI; <u>four</u> questions have to be answered.
 - c. A question can have a maximum of three sub-parts.

Cour	course Name	L-T-P - Credits	Yea	ar of			
CS368 Web Technologies		3-0-0-3	20)16			
	Prereguisite: Nil						
Course	e Objectives						
•	To impart the design, development and implementation of Dynam	nic Web Pa	ges.				
•	To develop programs for Web using Scripting Languages.		C				
•	To give an introduction to Data Interchange formats in Web.						
Syllab		NA A					
Basics	of Internet and World Wide Web, HTML and XHTML, Cascadin	g Style She	ets,				
Framev	works, Basics of JavaScript, JQuery, Introduction to XML and JSC	ON, Overvi	iew of l	PHP			
Expect	ted Outcome	AL					
The stu	ident will be able to						
i.	Understand different components in web technology and to know	v about CGI	and Cl	MS.			
ii.	Develop interactive Web pages using HTML/XHTML.						
111. ·	Present a professional document using Cascaded Style Sheets.						
1V.	Construct websites for user interactions using JavaScript and JQu	lery.					
V.	Know the different information interchange formats like XML an	ia JSON.					
VI. Toxt	Books						
1 I EXL 1	P I Deitel HM Deitel Internet & World Wide Web How To Pr	rogram 1/e	Dearso	'n			
1.	International Edition 2010	10grain, 4/0,	1 carso	11			
2	Robert W Sebesta Programming the World Wide Web 7/e Pear	son Educati	ion Inc	2014			
 Refer	ences	Join Laucan		, 201 1.			
1.	Bear Bibeault and Yehuda Katz, jQuery in Action, Se Publications.[Chapter 1]	econd Edit	ion, N	lanning			
	Black Book, Kogent Learning Solutions Inc. 2009.						
2.	Bob Boiko, Content Management Bible, 2 nd Edition, Wiley Publi	ishers. [Cha	pter 1, 2	2]			
3.	Chris Bates, Web Programming Building Internet Applications, 2009	, 3/e, Wiley	/ India	Edition			
4.	Dream Tech, Web Technologies: HTML, JS, PHP, Java, JSP, AS	SP.NET. XN	AL. AJ	AX.			
5.	Jeffrey C Jackson, Web Technologies A Computer Scien	ice Perspec	ctive, 1	Pearson			
	Education Inc. 2009.	1	,				
6.	Lindsay Bassett, Introduction to JavaScript Object Notation:	A To-the-F	Point G	uide to			
	JSON 1st Edition, O'Reilly.[Chapter 1,2,3,4]						
7.	Matthew MacDonald, WordPress: The Missing Manual, 2nd	Edition, O	'Reilly	Media.			
	[Chapter 1]						
Web	Resources 2014						
1.	www.w3.org/CGI/	10					
2.	old.tree.ro/en/strategy-white-papers/content-management-system	s.pdf					
3. httpd.apache.org/download.cg							
4. https://anstapart.com/article/irameworks							
5. https://get000isit.ap.com/css/ 6. https://www.w3.org/TR/WD.DOM/introduction.html							
0. https://www.w5.01g/11X/wD-DOW/IIII00duction.htmli Course Dian							
				End			
				Sem			
Modul	le Contents		Hours	Exam			
				Marks			

I	Introduction to the Internet: The World Wide Web, Web Browsers, Web Servers, Uniform Resource Locators, Multipurpose Internet Mail Extensions, The Hypertext Transfer Protocol. Common Gateway Interface(CGI), Content Management System – Basics <i>Case Study:</i> Apache Server, WordPress.	06	15%
II	Introduction to HTML/XHTML : Origins and Evolution of HTML and XHTML, Basic Syntax of HTML, Standard HTML Document Structure, Basic Text Markup, Images, Hypertext Links, Lists, Tables, Forms, HTML5, Syntactic Differences between HTML and XHTML.	07	15%
	FIRST INTERNAL EXAM		
ш	Introduction to Styles sheets and FrameworksCascading Style Sheets: Levels of Style Sheets - StyleSpecification Formats, Selector Forms, Property-ValueForms, Font Properties, List Properties, Alignment of Text, Color,The Box Model, Background Images, The span and div Tags.Frameworks: Overview and Basics of Responsive CSS Frameworks- Bootstrap.	06	15%
IV	Introduction to JavaScript and jQueryThe Basics of JavaScript:Overview of JavaScript, ObjectOrientation and JavaScript, General Syntactic Characteristics-Primitives, Operations, and Expressions, Screen Output andKeyboard Input, Control Statements, Object Creation andModification,Arrays,Functions. Callback Functions, JavaScript HTML DOM.Introduction to jQuery: Overview and Basics.	07	15%
	SECOND INTERNAL EXAMINATION		
V	Introduction to Data Interchange Formats XML: The Syntax of XML, XML Document Structure, Namespaces, XML Schemas, Displaying Raw XML Documents, Displaying XML Documents with CSS, XSLT Style Sheets, XML Applications. JSON(Basics Only): Overview, Syntax, Datatypes, Objects, Schema, Comparison with XML.	08	20%
VI	Introduction to PHP: Origins and Uses of PHP, Overview of PHP - General Syntactic Characteristics - Primitives, Operations, and Expressions - Control Statements, Arrays, Functions, Pattern Matching, Form Handling, Cookies, Session Tracking. END SEMESTER EXAM	08	20%

Assignment:

- It is highly recommended to give assignment based on:
 1. JavaScript Frameworks (like AngularJS or/and NodeJS)
 2. Any PHP web app based on frameworks(like Laravel, CodeIgniter, CakePHP, Zend etc.)

- 1. There will be *five* parts in the question paper A, B, C, D, E
- 2. Part A
 - a. Total marks : 12
 - b. <u>Four</u> questions each having $\underline{3}$ marks, uniformly covering modules I and II; All <u>four</u> questions have to be answered.
- 3. Part B
 - a. Total marks : 18
 - b. <u>*Three*</u> questions each having <u>9</u> marks, uniformly covering modules I and II; <u>*Two*</u> questions have to be answered. Each question can have a maximum of three subparts.
- 4. Part C
 - a. Total marks : 12
 - b. <u>Four</u> questions each having <u>3</u> marks, uniformly covering modules III and IV; All <u>four</u> questions have to be answered.
- 5. Part D
 - a. Total marks : 18
 - b. <u>*Three*</u> questions each having <u>9</u> marks, uniformly covering modules III and IV; <u>*Two*</u> questions have to be answered. Each question can have a maximum of three subparts
- 6. Part E
 - a. Total Marks: 40
 - b. <u>Six</u> questions each carrying 10 marks, uniformly covering modules V and VI; <u>four</u> questions have to be answered.
 - c. A question can have a maximum of three sub-parts.

Course	Course Name	L-T-P -	Yea	ar of
code.	Course Maine	Credits	Intro	duction
CS372	HIGH PERFORMANCE COMPUTING	3-0-0-3	20	016
Pre-requis	ites : CS202 Computer Organization and Architecture			
Course Ol	jectives			
• To	ntroduce the concepts of Modern Processors.			
• To	ntroduce Optimization techniques for serial code.			
• To	ntroduce Parallel Computing Paradigms.			
• To	ntroduce Parallel Programming using OpenMP and MPI.			
Syllabus				
Modern p	ocessors - pipelining-superscalarity-multicore processors-	Mutithread	led pro	cessors-
vector proc	essors- basic optimization techniques for serial code - taxon	omy of par	allel cor	nputing
paradigms.	shared memory computers- distributed-memory compute	rs- Hierard	chical S	ystems-
networks-	basics of parallelization - data parallelism - function parallel	elism- Para	allel sca	lability-
with MPI	nory parallel programming with Openhip - Distributed-mem	ory parane	er progra	amming
Fynected	Jutcome			
The studen	s will be able to			
i i i i i	appreciate the concepts used in Modern Processors for inc	reasing the	e perfori	nance.
ii	appreciate Optimization techniques for serial code.	i cusing in	periori	inunee.
iii	appreciate Parallel Computing Paradigms.			
iv	identify the performance issues in Parallel Programming	using Oper	nMP and	d MPI.
Text Book		U 1		
1. Geo	rg Hager, Gerhard Wellein, Introduction to High Perf	ormance	Comput	ing for
Sci	entists and Engineers, Chapman & Hall / CRC Computational	Science se	eries, 20	11.
Reference				
1. Cha	rles Severance, Kevin Dowd, High Performance Computi	ng, O'Rei	lly Med	lia, 2nd
Edi	ion, 1998.			
2. Kai	Hwang, Faye Alaye Briggs, Computer Architecture and Par	allel Proce	ssing, N	/IcGraw
Hil	, 1984.			
	Course Plan			
				Ena
Module	Contents]	Iours	Sem.
				Exam Morks
	Modern Processors : Stored Program Computer Archit	ecture-		11141 15
	General purpose cache- based microprocessor-Performance	based		
	metrics and benchmarks- Moore's Law- Pipelining- Superscalarity-			
Ι	SIMD- Memory Hierarchies Cache- mapping- prefetch- Mu	ulticore	07	15%
	processors- Mutithreaded processors- Vector Processors-	Design		
	Principles- Maximum performance estimates- Programmi	ng for		
	vector architecture.			

Π	Basic optimization techniques for serial code : scalar profiling- function and line based runtime profiling- hardware performance counters- common sense optimizations- simple measures, large impact- elimination of common subexpressions- avoiding branches- using simd instruction sets- the role of compilers - general optimization options- inlining - aliasing- computational accuracy- register optimizations- using compiler logs- c++ optimizations - temporaries- dynamic memory management- loop kernels and iterators data access optimization: balance analysis and light speed estimates- storage order- case study: jacobi algorithm and dense matrix transpose.	07	15%
	FIRST INTERNAL EXAM		
ш	Parallel Computers : Taxonomy of parallel computing paradigms- Shared memory computers- Cache coherance- UMA - ccNUMA- Distributed-memory computers- Hierarchical systems- Networks- Basic performance characteristics- Buses- Switched and fat- tree networks- Mesh networks- Hybrids - Basics of parallelization - Why parallelize - Data Parallelism - Function Parallelism- Parallel Scalability- Factors that limit parallel execution- Scalability metrics- Simple scalability laws- parallel efficiency - serial performance Vs Strong scalability- Refined performance models- Choosing the right scaling baseline- Case Study: Can slow processors compute faster- Load balance.	07	15%
IV	Distributed memory parallel programming with MPI : message passing - introduction to MPI – example - messages and point-to- point communication - collective communication – nonblocking point-to-point communication- virtual topologies - MPI parallelization of Jacobi solver- MPI implementation - performance properties	08	15%
	SECOND INTERNAL EXAM Shared memory parallel programming with OpenMp : introduction		
V	to OpenMp - parallel execution - data scoping- OpenMp work sharing for loops- synchronization - reductions - loop scheduling - tasking - case study: OpenMp- parallel jacobi algorithm- advanced OpenMpwavefront parallelization- Efficient OpenMP programming: Profiling OpenMP programs - Performance pitfalls- Case study: Parallel Sparse matrix-vector multiply.	08	20%
VI	Efficient MPI programming : MPI performance tools- communication parameters- Synchronization, serialization, contention- Reducing communication overhead- optimal domain decomposition- Aggregating messages – Nonblocking Vs Asynchronous communication- Collective communication- Understanding intra-node point-to-point communication. END SEMESTER EXAM	08	20%

- 1. There will be *five* parts in the question paper -A, B, C, D, E
- 2. Part A
 - a. Total marks : 12

- b. <u>Four</u> questions each having <u>3</u> marks, uniformly covering modules I and II; All<u>four</u> questions have to be answered.
- 3. Part B
 - a. Total marks : 18
 - b. <u>*Three*</u> questions each having <u>9</u> marks, uniformly covering modules I and II; <u>*Two*</u> questions have to be answered. Each question can have a maximum of three subparts.
- 4. Part C
 - a. Total marks : 12
 - b. <u>Four</u> questions each having <u>3</u> marks, uniformly covering modules III and IV; All<u>four</u> questions have to be answered.
- 5. Part D
 - a. Total marks : 18
 - b. <u>*Three*</u> questions each having <u>9</u> marks, uniformly covering modules III and IV; <u>*Two*</u> questions have to be answered. Each question can have a maximum of three subparts
- 6. Part E
 - a. Total Marks: 40
 - b. <u>Six</u> questions each carrying 10 marks, uniformly covering modules V and VI; <u>four</u> questions have to be answered.
 - c. A question can have a maximum of three sub-parts.
- 7. There should be at least 60% analytical/numerical questions.

Course	Course Name	L-T-P-	Year of		
code	Course Maine	Credits	Introduction		
CS332	MICROPROCESSOR LAB	0-0-3-1	2016		
Pre-requisite: CS305 Microprocessors and Microcontrollers					
Course Ol	ojectives				
• To	practice assembly language programming on 8086.				
• To	practice fundamentals of interfacing/programming vari	ous peripher	al devices with		
mi	croprocessor/microcontroller.				
List of Ex	ercises/ Experiments: (Minimum 12 Exercises/ Experimen	its are mand	atory. Exercises/		
Experimen	nts marked with * are mandatory)				
I. Assemb	ly Language Programming Exercises/Experiments using 80	986 Trainer ki	it		
1. lm	plementation of simple decimal arithmetic and bit manipula	ition operatio	ns.*		
2. Im	plementation of code conversion between BCD, Binary, Hex	adecimal and	I ASCII.		
3. Im	plementation of searching and sorting of 16-bit numbers.				
4. Pro	ogramming exercises using stack and subroutines. [^]				
II. Exercis	es/Experiments using MASM (PC Required)				
5. Stu	dy of Assembler and Debugging commands.				
6. lm	plementation of decimal arithmetic(16 and 32 bit) operation	.s.*			
7. lm	plementation of String manipulations.*				
8. Im	plementation of searching and sorting of 16-bit numbers.				
9. Im	plementation of Matrix operations like addition, transpose, 1	multiplicatior	n etc.		
III. Interfa	cing Exercises/Experiments with 8086 trainer kit through	Assembly La	nguage		
Programm	ling				
10. Int	erfacing with stepper motor - Rotate through any given sequ	ience.*			
11. Int	erfacing with 8255 (model and model only).*	11			
12. Int	erfacing with 8279 (Rolling message, 2 key lock out and N-k	ey roll over			
10 In	plementation).*				
13. Int	erfacing with 8253/54 Timer/Counter.				
14. Int	erfacing with Digital-to-Analog Converter.*				
15. Int	erfacing with Analog-to-Digital Converter.				
16. Int	erfacing with 8259 Interrupt Controller.				
IV. Exercis	ses/Experiments using 8051 trainer kit	11 т	1		
17. Fai	niliarization of 8051 trainer kit by executing simple Assem	bly Language	e programs such		
	decimal arithmetic and bit manipulation."				
18. Im	plementation of limer programming (in model).	ufacine a constant	an agu intenfe sin a		
19. Im	19. Implementation of stepper motor interfacing, ADC/DAC interfacing and sensor interfacing				
W11 Expected	n 6251 unough Assembly Language programming.				
The stude	Jucome				
	its will be able to	ing offerer	intomunto and		
	arious assembler directives.	ising sonwar			

ii. Implement interfacing of various I/O devices to the microprocessor/microcontroller through assembly language programming.

Course		L.T.P.	Vear of	
code	Course Name	Credits	Introduction	
CS334	Network Programming Lab	0-0-3-1	2016	
Pre-requisite: CS307 Data Communication				
Course Objectives				
• To introduce Network related commands and configuration files in Linux Operating System.				
• To introduce tools for Network Traffic Analysis and Network Monitoring.				
• To practice Network Programming using Linux System Calls.				
• To design and deploy Computer Networks.				
List of Exercises/ Experiments (12 Exercises/ Experiments are to be completed . Exercises/				
Experiments marked with * are mandatory)				
1. Getting started with Basics of Network configurations files and Networking Commands in Linux.				
2. To familiarize and understand the use and functioning of System Calls used for Operating system				
	and network programming in Linux.			
3.	3. <u>Familiarization and implementation of programs related to Process and thread.</u>			
4.	4. Implement the First Readers-Writers Problem.			
5.	Implement the Second Readers-Writers problem.			
6.	Implement programs for Inter Process Communication using PIPE, Message Queue and Shared			
	Memory.			
7.	7. Implement Client-Server communication using Socket Programming and TCP as transport layer			
_	protocol.*			
8.	Implement Client-Server communication using Socket Programming and UDP as transport layer			
0	protocol.*	1.4		
9.	Implement a multi user chat server using TCP as transport layer protoc	col.*		
10.	Implement Concurrent Time Server application using UDP to execute the program at remoteserver.			
	Client sends a time request to the server, server sends its system t	ime back to t	he client. Client	
11	displays the result."	1		
11.	Implement and simulate algorithm for Link state routing protoco	1.		
12. 12	Implement and simulate algorithm for Link state routing protocol.			
13.	Implement Simple Man Transler Flotocol.	valiant if it av	ista If not someon	
14.	sends appropriate message to the client. Server should also send its i	rocess ID (PI	D) to clients for	
	display along with file or the message *		D) to enemis for	
15	Using Wireshark observe data transferred in client server communic	pation using U	DP and identify	
10.	the LIDP datagram	ation using O	Di and identify	
16	Using Wireshark observe Three Way Handshaking Connection Est	ablishment D	ata Transfer and	
10.	Three Way Handshaking Connection Termination in client server con	munication us	sing TCP.	
17.	Develop a packet capturing and filtering application using raw sockets			
18.	Design and configure a network with multiple subnets with wired and	wireless LAN	s using required	
	network devices. Configure the following services in the network- TE	LNET, SSH, I	TP server, Web	
	server, File server, DHCP server and DNS server.*			
19.	Install network simulator NS-2 in any of the Linux operating system a	nd simulate wi	red and wireless	
scenarios.				
Expected Outcome				
The students will be able to				
1 Use network related commands and configuration files in Linux Operating System				

- Use network related commands and configuration files in Linux Operating System. I.
- Develop operating system and network application programs.
 Analyze network traffic using network monitoring tools.