KERALA TECHNOL OGICAL UNIVERSI TY

Master of Technology

Curriculum, Syllabus and Course Plan

Cluster	:	1
Branch	:	Electronics & Communication
Stream	:	Signal Processing
Year	:	2015
No. of Credits	:	67

SEMESTER 1

Slot	er			S	End Semester Examination		
Examination S	Course Number	Name	L-T-P	Internal Marks	Marks	Duration (hours)	Credits
Α	01EC6301	Applied Linear Algebra	3-0-0	40	60	3	3
В	01EC6303	Random Processes and Applications	3-1-0	40	60	3	4
С	01EC6205	Advanced Digital Communication	3-1-0	40	60	3	4
D	01EC6307	DSP System Design	3-0-0	40	60	3	3
Е		Elective I	3-0-0	40	60	3	3
S	01EC6999	Research Methodology	0-2-0	100			2
Т	01EC6391	Seminar I	0-0-2	100			2
U	01EC6393	DSP Systems Lab	0-0-2	100			1
		TOTAL	15-4-4	500	300	-	22

TOTAL CONTACT HOURS

23 22

:

:

TOTAL CREDITS

Elective I

01EC6311 Speech Signal Processing 01EC6313 Optical Signal Processing

01EC6315 Biomedical Signal Processing

SEMESTER 2

Slot	- Jacobian State			s	End Semester Examination		
Examination S	Course Number	Name	L-T-P	Internal Marks	Marks	Duration (hours)	Credits
Α	01EC6302	Estimation and Detection Theory	3-1-0	40	60	3	4
В	01EC6304	Digital Image Processing	3-0-0	40	60	3	3
С	01EC6306	Multirate Systems and Wavelets	3-0-0	40	60	3	3
D		Elective II	3-0-0	40	60	3	3
E		Elective III	3-0-0	40	60	3	3
V	01EC6392	Mini Project	0-0-4	100			2
U	01EC6394	Image Processing Lab	0-0-2	100			1
		TOTAL	15-1-6	400	300	-	19

TOTAL CONTACT HOURS	:
TOTAL CREDITS	:

Elective II

22 19

- 01EC6312 Adaptive Signal Processing
- 01EC6314 Audio Signal Processing

01EC6316 Pattern Recognition and Machine Learning

Elective III

- 01EC6122 Design of VLSI Systems
- 01EC6218 Soft Computing
- 01EC6322 Optimization Techniques

SEMESTER 3

n Slot	Number			arks	Sem	nd ester nation	
Examination	Course Nu	Name	L-T-P	Internal Marks	Marks	Duration (hours)	Credits
Α		Elective IV	3-0-0	40	60	3	3
В		Elective V	3-0-0	40	60	3	3
Т	01EC7391	Seminar II	0-0-2	100			2
W	01EC7393	Project (Phase 1)	0-0- 12	50			6
		TOTAL	6-0- 14	230	120	-	14

TOTAL CONTACT HOURS	:	20
TOTAL CREDITS	:	14

Elective IV

- 01EC7311 VLSI Structures for Digital Signal Processing
- 01EC7313 Space Time Coding and MIMO Systems
- 01EC7213 Secure Communication

Elective V

- 01EC7317 Array Signal Processing
- 01EC7319 Bio Informatics
- 01EC7315 Computer Vision

SEMESTER 4

Slot	ber			rks	End Semester Examination			
Examination	Course Number	Name	L-T-P	Internal Marks	Marks	Duration (hours)	Credit	
W	01EC7394	Project (Phase 2)	0-0- 23	70	30		12	
		TOTAL	0-0- 23	70	30	-	12	

TOTAL CONTACT HOURS	:	23
TOTAL CREDITS	:	12

TOTAL NUMBER OF CREDITS: 67

SEMESTER – I

Syllabus and Course Plan

Cours	e No.	Course Name	L-T-P	Credits	Yea	r of li	ntroduction
01EC63	301	Applied Linear Algebra	3-0-0	3		2	015
	 To a system 	Cour develop the skills in abstract algeb develop the skills to identify linear tems develop the skills to formulate line	transformat	ion and transf			
	-	Linear independence, Linear Tra ection, pseudo inverse, Generaliz					•
	2. Unc	Expe lerstand the formulation of proble lerstand and represent linear tran lerstand the role of matrices in lin	sformations	ict algebra fra			
2. 3.	Frazier Publica Hoffma	immons, Topology and Moderr , Michael W. An Introduction to ations. an Kenneth and Kunze Ray, Lir and Bronson, Academic Press	Wavelets	Through Line	ear Algeb		pringer
		CO	URSE PLA	N			
Module		Content	ts			Hours Allotted	% of Marks in End-Semester
	Algebr	aic Structures: Group, Ring, Field	1				
I	IVector Spaces, Subspaces, Linear Combinations, Subspace spanned by set of vectors, Linear dependence and Linear independence, Spanning set and basis, Finite dimensional vector spaces715						15
II	Solutions to Linear System of Equations : Simple systems, Homogeneous and Non-homogeneous systems, Gaussian elimination, Null Space and Range, Rank and nullity, Consistency conditions in terms of rank, General Solution of a linear system, Elementary Row and					7	15

Cours	ourse No. Course Name L-T-P Credits Y			Ye	ear of Introduction		
Column operations, Row Reduced Form, existence and uniqueness of solutions, projection, least square solution -pseudo inverse.					ness of		
	-	FIRST IN	TERNAL E	XAM			
III		Transformations -four funda rmation -inverse transformation entation of linear transformation, (- rank null	ity theorem -	Matrix	7	15
IV	Inner product, Inner product Spaces, Cauchy – Schwarz inequality, Norm, Orthogonality, Gram – Schmidt orthonormalization, Orthonormal basis, Expansion in terms of orthonormal basis, Orthogonal complement, Decomposition of a vector with respect to a subspace and its orthogonal complement – Pythagoras Theorem				7	15	
	· 1		NTERNAL				
v	multipli Diagon Decom and He Unitary Symme	alue – Eigenvector pairs, cha city, Eigenvectors, Eigenspace alization criterion, The diago position of the matrix in terms ermitian matrices , Properties of /Orthogonal diaganalizability etric Matrices, Spectral Theorem, mi Definite matrices.	es and ge onalizing of of projection of Eigen va of Comp	eometric mul matrix, Proje ns, Real Syn lues, Eigen v les Hermitia	tiplicity, ections, nmetric rectors, an/Real	7	20
VI	Singula Optima	al Matrices : Rank, Nullity, Range ar Values, Singular Value Decc Il solution of a linear system o pinverse	mposition,	Pseudoinvers	se and	7	20
	•	END SE	EMESTER I	EXAM			

Course No. Course Name L-T-P Credits Year of Introduction

01EC6303 Random Processes and Applications

> 3-1-0 4 2015

Course Objectives

- 1. To provide necessary basic concepts in statistical signal analysis
- To study about random processes and its properties
- 3. Apply the basic concepts to various elementary and some advanced applications

Syllabus

Probability theory, Random variable, Probability Density function, Conditional and Joint Distributions and densities, Functions of Random Variables, Expectation, Conditional Expectations, Random Vector, Random Processes, Chapman- Kolmogorov Equations, WSS Processes and LTI Systems, Inequalities, Central limit theorem, Random Sequences, Advanced Topics.

Expected Outcome

- 1. Have a fundamental knowledge of the basic probability concepts
- 2. Have a good knowledge of standard distributions which can describe real life phenomena
- 3. Acquire skills in handling situations involving several random variable and functions of random variables
- 4. Understand and characterize phenomena which evolve with respect to time in probabilistic manner

References

- 1. Henry Stark and John W. Woods "Probability and Random Processes with Applications to Signal Processing", Pearson Education, Third edition.
- 2. Athanasios Papoulis and S. Unnikrishna Pillai. Probability, Random Variables and Stochastic Processes, TMH
- Gray, R. M. and Davisson L. D., An Introduction to Statistical Signal Processing. Cambridge University Press, 2004 (Available at: <u>http://www.ee.stanford.edu/~gray/sp.pdf</u>)
- 4. Oliver C. Ibe., Fundamentals of Applied Probability and Random Process, Elseiver, 2005.

COURSE PLAN

Module Contents Hours Allotted % of Marks in End-Semester Examination

Introduction: Sets, Fields and Events, Definition of probability, Joint, Conditional and Total Probability, Bayes' Theorem and applications. Random Variable:- Definition, Probability Distribution Function, Probability Density function, Common density functions, Continuous, Discrete and Mixed random Variables.

8 12

Ш

Conditional and Joint Distributions and densities, independence of random variables. Functions of Random Variables: One function of one random variable, One function of two random variables, Two functions of two random variables.

10

18 FIRST INTERNAL EXAM

Expectation: Fundamental Theorem of expectation, Moments, Joint moments, Moment Generating functions, Characteristic functions, Conditional Expectations, Correlation and Covariance, Jointly Gaussian Random Variables. Random Vector: - Definition, Joint statistics, Covariance matrix and its properties.

10 15

IV

Random Processes: -Basic Definitions, Poisson Process, Wiener Process, Markov Process, Birth- Death Markov Chains, Chapman- Kolmogorov Equations, Stationarity, Wide sense Markov Process Stationarity, WSS Processes and LTI Systems, Power spectral density, White Noise.

10 15

SECOND INTERNAL EXAM

V

Chebyshev and Schwarz Inequalities, Chernoff Bound, Central Limit Theorem. Random Sequences: Basic Concepts, WSS sequences and linear systems, Markov Random sequences, Markov Chains, Convergence of Random Sequences: Definitions, Laws of large numbers.

10 24

VI

Cluster: 1

Branch: Electronics & Communication Engineering

Advanced Topics: Ergodicity, Karhunen- Leove Expansion, Representation of Bandlimited and periodic Processes: WSS periodic Processes, Fourier Series for WSS Processes

8 16 END SEMESTER EXAM

Course No.	Course Name	L-T-P	Credits	Year of Introduction
01EC6205	Advanced Digital Communication	3-1-0	4	2015

Course Objectives

- **1.** To introduce the different aspects of digital communication over various channels, from design through performance issues to application requirement.
- **2.** To give an idea on the advances in Multichannel and Multicarrier Systems design.

Syllabus

Digital Communication over Additive Gaussian Noise Channels- Optimum waveform receiver in additive white Gaussian noise. Digital Communication over Band limited Channels- Optimum receiver for channels with ISI and AWGN- Equalization Techniques. Spread spectrum Communication- modelling, application and synchronization of spread spectrum signals. Digital Communication over Fading Multipath Channels. Multiuser Communication - techniques and capacity.

Expected Outcome

- **1.** Understand the design issues of Digital Communication over Additive Gaussian Noise Channels, over Band limited Channels and Fading Multipath Channels.
- 2. Understand the design issues in spread spectrum and multicarrier systems.
- **3.** Understand various digital communication receivers and equalization

References

- **1.** John G. Proakis, Digital Communications, 4/e, McGraw-Hill
- **2.** Edward. A. Lee and David. G. Messerschmitt, "Digital Communication", Allied Publishers (second edition).
- **3.** Viterbi, A. J., and J. K. Omura. Principles of Digital Communication and Coding. NY: McGraw-Hill, 1979. ISBN: 0070675163.

- 4. Marvin K Simon, Sami M Hinedi, William C Lindsey Digital Communication -Techniques Signal Design & Detection, PHI.
- **5.** Bernard Sklar," Digital Communications: Fundamentals and applications ", Prentice Hall 2001.
- **6.** Andrea Goldsmith," Wireless Communications", Cambridge University Press 2005.

	COURSE PLAN						
Module	Contents	Hours Allotted	% of Marks in End-Semester				
I	Characterization of Communication Signals and Systems: Representation of bandpass signals and systems. Signal space representation. Representation of digitally modulated signals: memoryless modulation methods, linear modulation with memory. Power spectra, Bandwidth efficiency.	8	15				
II	Optimum receiver for additive white Gaussian noise channel: correlation demodulator, matched filter demodulator, optimum detector. Performance of optimum receiver for memoryless modulation techniques: probability of error for binary modulation and M-ary orthogonal signals, QPSK, QAM.	10	15				
	FIRST INTERNAL EXAM						
111	Communication through band limited channels: Signal design for bandlimited channels. Optimum receiver for channels with ISI and AWGN. Equalization techniques: Linear equalization, Decision feedback equalization, ML detectors. Adaptive equalization: Algorithms	10	15				
IV	Multicarrier Systems: Data transmission with multiple carriers, Multicarrier modulation with overlapping subchannels, Mitigation of subcarrier fading. Discrete implementation of multicarrier modulation. challenges in multicarrier systems.	8	15				
	SECOND INTERNAL EXAM						
v	Digital communication through fading multipath channel: characterisation of fading multipath channel. The effect of signal characteristics on the choice of a channel model. Frequency-non selective slowly fading channel. Digital signalling over a frequency- selective slowly fading channel.	10	20				
VI	Multiple access techniques- Capacity of multiple access methods. Spread spectrum principles, processing gain and jamming margin. Direct sequence spread spectrum (DSSS), Frequency Hopping Spread Spectrum (FHSS). Synchronisation of spread spectrum systems.	10	20				

 COURSE PLAN					
CDMA signal and channel models, optimum receiver. Random access methods.					
END SEMESTER EXAM					

	Course Name	L-T-P	Credits	Year of Introduction
01EC6307	DSP System Design	3-0-0	3	2015
	Cours	e Objectiv	ves	
	o provide basic concepts in number o study about issues in pipelining a			
	Syl	llabus		
Basic Pipelin Level Paralle	to Programmable DSP, Number sys ing, Basic performance issue in pip lism, Dynamic Scheduling, Dynamic 6X Processors and its programming	elining, Sim c Hardware	ple implement	ation of MIPS, Instruction
	Expec	ted Outco	me	
	nderstand the fundamentals of DSF ave a good knowledge of Pipelining	•		esentations.
	Re	eferences		
-	ital Signal Processing with Field	Programm	able Gate Arr	ays, <u>Uwe Meyer-Baese</u> ,
2. Digi	inger; 3rd edition ital Signal Processing and Applic assaing, Worcester Polytechnic I			
3. JL	Hennessy, D A Patterson, Comp tion Elsevier India.		•	
	P Processor and Fundamentals:			es. Phil Lapsley, JBier,
Cluster: 1	Branch: Electronics & Com	munication En 14	gineering	Stream: Signal Processing

	Course Name	L-T-P	Credits	Yea	r of Int	roduction
5	Amit Sohan, Edward A Lee; Wiley Sen M Kuo, Woon- Seng S Gan, I					
	cc		N			
Module	Conte	nts			Hours Allotted	% of Marks in End-Semester
I	Introduction to Programmable DSP - Accumulate), Numeric Representation number system, Conventional fixed adders, Multiplier Adder Graph, Unconventional fixed point number sy and RNS.	ns and Arithm point number Floating poi	etic: Classifica system, Car nt number	ation of ry free format,	6	15
II	Chinese Remainder Theorem (CRT), Binary to RNS, Index Multiplier: F Multiplication in index domain. Dist Signed DA system, CORDIC Algorith mode.	Primitive mod tributed Arith	root, Additic metic (DA): I	on and Design,	8	15
	FIRST II	NTERNAL EX	AM		•	
Ш	Basic Pipelining and Simple RISC instructions and its format, Implem Pipelining, Pipeline Registers, Basic Pipeline Hazards (based on MIF Penalties, Performance of pipeline wit	entation of F performance PS), Reducir	RISC instruction issue in pip	on set, elining,	6	15
IV	Simple implementation of MIPS, Ba Level Parallelism: Concepts, Dependent hazards, Dynamic Scheduling - Rec Algorithm.	sic pipeline f ndences, RA ducing data	N, WAW, and hazards, Tom	d WAR	6	15
	SECOND Dynamic Hardware Prediction - Redu	INTERNAL E		+ 2 64		
v	correlating branch and tournament pr Target Buffer, Return address predi design, Cache performance review, M identification and replacement.	redictor, Limita ictor, Memory	ations of ILP, hierarchy -	Branch Cache	8	20
VI	Introduction to TMS320C6X Prod -Functional Units- Pipelining, Pe addressing modes. Types of Inst Typical DSP development system, s	ripherals, Li ructions-Prog	near and (ramming Exa	amples,	8	20

	Course Name	L-T-P	Credits	Ye	ar of Introduction	
assem						
END SEMESTER EXAM						

Course No. Course Name L-T-P Credits Year of Introduction

01EC6311 Speech Signal Processing

> 3-0-0 3 2015

Course Objectives

- 1. Familiarize the basic mechanism of speech production and get an overview of articulatory and acoustic Phonetics
- 2. Learn the basic concepts of methods for speech analysis and parametric representation of speech
- 3. Acquire knowledge about various methods used for speech coding
- 4. Get a overall picture about various applications of speech processing

Syllabus

Speech production, Articulatory and Acoustic phonetics, Time domain analysis, Frequency domain analysis, Cepstral analysis, LPC analysis, GMM, HMM, Speech coding, Speech recognition, Speech enhancement, Text to speech

Expected Outcome

- 1. Understand basic concepts of speech production, speech analysis, speech coding and parametric representation of speech and apply it in practical applications
- 2. Ability to develop systems for various applications of speech processing

References

- 1. Douglas O'Shaughnessy, Speech Communications: Human & Machine, IEEE Press, Hardcover 2nd edition, 1999; ISBN: 0780334493.
- 2. Nelson Morgan and Ben Gold, Speech and Audio Signal Processing: Processing and Perception Speech and Music, July 1999, John Wiley & Sons, ISBN: 0471351547
- 3. Rabiner and Schafer, Digital Processing of Speech Signals, Prentice Hall, 1978.
- 4. Rabiner and Juang, Fundamentals of Speech Recognition, Prentice Hall, 1994.
- 5. Thomas F. Quatieri, Discrete-Time Speech Signal Processing: Principles and Practice, Prentice Hall; ISBN: 013242942X; 1st edition
- 6. Donald G. Childers, Speech Processing and Synthesis Toolboxes, John Wiley & Sons, September 1999; ISBN: 0471349593

COURSE PLAN

Module Contents Hours Allotted % of Marks in End-Semester Examination

Speech Production: Acoustic theory of speech production (Excitation, Vocal tract model for speech analysis, Formant structure, Pitch). Articulatory Phonetics, and Acoustic Phonetics, Speech Analysis: Short-Time Speech Analysis, Time domain analysis (Short time energy, short time zero crossing Rate, ACF).

7 14

II Frequency domain analysis (Filter Banks, STFT, Spectrogram, Formant Estimation & Analysis), Cepstral Analysis, MFCC

8

16 FIRST INTERNAL EXAM

|||

Parametric representation of speech: AR Model, ARMA model. LPC Analysis (LPC model, Auto correlation method, Covariance method, Levinson-Durbin Algorithm, Lattice form).

8 18

IV

5 12

Sinusoidal Model, GMM, Hidden Markov Model

SECOND INTERNAL EXAM

Speech coding: Phase Vocoder, LPC, Sub-band coding, Adaptive Transform Coding, Harmonic Coding, Vector Quantization based Coders, CELP

7

20 VI

Speech recognition

Speech processing: Fundamentals of Speech recognition, Speech segmentation. Text-to-speech conversion, speech enhancement, Speaker Verification, Language Identification, Issues of Voice transmission over Internet.

7

Branch: Electronics & Communication Engineering

Cluster: 1

20 END SEMESTER EXAM

Cours	se No.	Course Name	L-T-P	Credits	Yea	r of In	troduction
01EC6	6313	Optical Signal Processing	3-0-0	3		20	015
	2. Le sp 3. Ac	Cours miliarize the basic theory of light arn the transform domain appro ace etc. equire knowledge about various sp et a overall picture about various p	ach of diffe	, concept of s rent optical o vsis tools, filte	omponer	nts like	
Optics and s	Syllabus Need and fundamentals of OSP, Fresnel Transform, Transform of a slit, Fourier Transforms in Optics, Resolution criteria, A Basic Optical System, Cascaded systems, Chirp _ Z transform and system Coherence. Spectrum Analysis, Spatial Filtering, Applications of Optical Spatial Filtering, Heterodyne systems, heterodyne spectrum Analysis. Photo detector geometry and						
	 Expected Outcome Understand basic concepts of light propagation, spatial frequency and Spectral analysis Ability to develop optical filters, modulators and detectors for various applications of light processing 						
		R	eferences				
1. 2. 3.	D. C P.M.	nony Vander Lugt, Optical Sign casasent, Optical data processi Dufffieux, The Fourier Transf s 1983	ng-Applica	tions Spring	er-Verlag	g, Ber	lin, 1978
		COL	JRSE PLA	N			
Module		Content	s			Hours Allotted	% of Marks in End-Semester
I	Need for OSP, Fundamentals of OSP, The Fresnel Transform, Convolution and impulse response, Transform of a slit, Fourier Transforms in Optics, Transforms of Aperture functions, Inverse Fourier615Transform. Resolution criteria.1515						

Cour	se No.	Course Name	L-T-P	Credits	Yea	r of In	troduction
A Basic Optical System, Imaging and Fourier Transform conditions. Cascaded systems, scale of Fourier Transform Condition. Maximum information capacity and optimum packing density. Chirp _ Z transform and system Coherence. 7						7	15
	•	FIRST IN	TERNAL E	XAM			
III	Perfor	rum Analysis, Spatial light Modu mance parameters for spectrum a and Dynamic range. The 2 D spect	analyzers. F	Relationship b		7	15
IV	Spatia theore Inverse system	I Filtering, Linear Space Inv m,Correlation, Input/Output Spec e Filtering, Spatial Filters, In ns, Spatial Modulators, Applications of small displacements.	variant sys stral Densiti terferomete	stems, Pa es, Matched f rs, Spatial	filtering	8	15
	Liioote	•	NTERNAL	EXAM		I	
v	detect	odyne systems. Temporal and spat or size, Optical radio. Direct detec odyne spectrum Analysis.		•		7	20
VI	Photo	I and temporal Frequencies. The (detector geometry and bandwidth a CCD array.	-			7	20
	1	END SE	EMESTER I	EXAM	I	I	

Course	lo. Course Name	L-T-P	Credits	Yea	r of In	troduction	
01EC631	Biomedical Signal Processing	3-0-0	3		20	015	
ar 2. To	 Course Objectives To develop innovative techniques of signal processing for computational processing and analysis of biomedical signals. To extract useful information from biomedical signals by means of various signal processing techniques 						
	;	Syllabus					
spectral a analysis,	nd significance of bioelectric potentia nalysis, correlation and estimation tec nutomated diagnosis based on decision e pattern studies	hniques, EC	G: morpholog	gical studi	es and	d rhythm	
	Exped	cted Outco	me				
	 Understands how basic concepts and tools of science and engineering can be used in understanding and utilizing biological processes. Hands-on approach to learn about signal processing and physiological signals through the application of digital signal processing methods to biomedical problems 						
	R	eferences					
2. 3.	Willis J Tompkins, Biomedical Sig D. C. Reddy ,"Biomedical Sigr McGraw Hill, New Delhi, 2005 Biomedical Signal and Image Splinter, The CRC Press (2012 Biomedical Signal Analysis: A C Akay Metin (Editor) Wiley Intersci	nal Proces Processing) case Study	sing: Princip " 2nd Editio Approach b	oles and on by K	tech . Naj	niques",Tata arian and R.	
	COI	URSE PLA	N				
Module	Conten	ts			Hours Allotted	% of Marks in End-Semester	
I b Ca	troduction to biomedical signals. The amples of biomedical signals ECG, comedical signal analysis, difficulties mputer-aided diagnosis. Biomedical analog filtering, correlation and end G	EEG, EMG in biomed signal spe	, EOG. objec ical signal a ctral analysis	tives of nalysis, , digital	6	15	

Cour	se No.	Course Name	L-T-P	Credits	Yea	ar of Int	roduction
Filtering for Removal of Artifacts, Time-domain Filters, Frequency- domain Filters. Optimal Filtering: The Wiener Filter, Adaptive Filters for Removal of Interference. Selecting an Appropriate Filter. Application: Removal of Artifacts in the ECG. Maternal - Fetal ECG. Muscle- contraction Interference					ers for	7	15
	1	FIRST IN1	ERNAL EX	AM			
111	rhythm Signal	Pre-processing, wave form recog n analysis, automated diagnosis Processing: Baseline Wandering filtering – QRS detection - Arrhyth	based on d , Power line	ecision theor interference,	y. ECG	7	15
IV	The electroencephalogram - EEG rhythms & waveform - categorization of EEG activity - recording techniques - Evoked potential estimation.					8	15
		SECOND IN		XAM			
v	- artifa	ling EEG- linear, stochastic mode acts in EEG & their characteristics al analysis - EEG segmentation - ation analysis of EEG channels els.	s and proces Joint Time-F	ssing – Mode requency an	l based alysis –	7	20
VI	muscle and Po	lectromyogram (EMG) - Generat e contraction- Recording Techniq ower estimation of EMG signals s -Modeling and decomposition of	ues and Ap	plications -An y estimation i	nplitude	7	20
		END SE	MESTER EX	KAM			

Course No.	Course Name	L-T-P	Credits	Year of Introduction
01EC6999	Research Methodology	0-2-0	2	2015

Course Objectives

- 1. To prepare the student to do the M. Tech project work with a research bias.
- 2. To formulate a viable research question.
- 3. To develop skill in the critical analysis of research articles and reports.
- 4. To analyze the benefits and drawbacks of different methodologies.
- 5. To understand how to write a technical paper based on research findings.

Syllabus

Introduction to Research Methodology-Types of research- Ethical issues- Copy right-royalty-Intellectual property rights and patent law-Copyleft- Openacess-

Analysis of sample research papers to understand various aspects of research methodology:

Defining and formulating the research problem-Literature review-Development of working hypothesis-Research design and methods- Data Collection and analysis- Technical writing- Project work on a simple research problem

Approach

Course focuses on students' application of the course content to their unique research interests. The various topics will be addressed through hands on sessions.

Expected Outcome

Upon successful completion of this course, students will be able to

- 1. Understand research concepts in terms of identifying the research problem
- 2. Propose possible solutions based on research
- 3. Write a technical paper based on the findings.
- 4. Get a good exposure to a domain of interest.
- 5. Get a good domain and experience to pursue future research activities.

References

- 1. C. R. Kothari, Research Methodology, New Age International, 2004
- 2. Panneerselvam, Research Methodology, Prentice Hall of India, New Delhi, 2012.
- 3. J. W. Bames, Statistical Analysis for Engineers and Scientists, Tata McGraw-Hill, New York.
- 4. Donald Cooper, Business Research Methods, Tata McGraw-Hill, New Delhi.
- 5. Leedy P. D., Practical Research: Planning and Design, McMillan Publishing Co.
- 6. Day R. A., How to Write and Publish a Scientific Paper, Cambridge University Press, 1989.
- 7. Manna, Chakraborti, Values and Ethics in Business Profession, Prentice Hall of India, New Delhi, 2012.
- 8. Sople, Managing Intellectual Property: The Strategic Imperative, Prentice Hall ofIndia, New Delhi, 2012.

COURSE PLAN

Cours	se No.	Course Name	L-T-P	Credits	Ye	ar of I	ntroduction
Module		Content	Hours Allotted	% of Marks in End-Semester			
I	Types Profes Copy Copyle Citatio	uction to Research Methodology: of research: Find examples from I sional ethics in research - Eth right - royalty - Intellectual pro eft- Openacess-Reproduction of p n and acknowledgement. t factor. Identifying major conference ncerned area. Collection of at lease	literature. lical issues- operty rights oublished ma ences and i	-ethical com s and paten aterial - Plag mportant jou	mittees. t law - iarism -	5	
II	Definir Analyz undert	ng and formulating the research the chosen papers and under aken literature review, identified bjectives, formulated their problem	h problem erstand how the resear	-Literature w the author ch gaps, ar	rs have rived at	4	
	•	FIRST IN	ITERNAL E	XAM		•	
111	unders	rch design and methods: An stand formulation of research mental methods used. Study of I	methods a	and analytic	al and	4	No end semester written
IV	metho	Collection and analysis. Analyze the data collection used I gies used– Study the tools used for	Data Proce	ssing and A		5	examination
			INTERNAL				
v	Technical writing - Structure and components, contents of a typical technical paper, difference between abstract and conclusion, layout, illustrations and tables, bibliography, referencing and footnotes-use of tools like Latex.					5	
VI		ication of a simple research rch design- Methodology –paper				5	
		END S	EMESTER	EXAM			

Course No.	Course Name	L-T-P	Credits	Year of Introduction				
01EC6391	Seminar I	0-0-2	2	2015				
Course Objectives To make students 1. Identify the current topics in the specific stream. 2. Collect the recent publications related to the identified topics. 3. Do a detailed study of a selected topic based on current journals, published papers and books. 4. Present a seminar on the selected topic on which a detailed study has been done. 5. Improve the writing and presentation skills.								
		Approach						
	nts shall make a presentation fo bic and submit a report based o			on the detailed study of				
Expected Ou	Expected Outcome							
1. Get g 2. Impro	ful completion of the seminar, the ood exposure in the current top ve the writing and presentation	oics in the s skills.		m.				

3. Explore domains of interest so as to pursue the course project.

Course No.	Course Name	L-T-P	Credits	Year of Introduction
01EC6393	DSP Systems Lab	0-0-2	1	2015

Course Objectives

- 1. Attain ability to develop projects using DSP processors
- 2. Familiarize the use of DSP processor based system for real time applications
- 3. Develop skill to use higher level as well as assembly language for

implementation of DSP based system

List of Exercises / Experiments

Development Environment

Familiarization to DSP project development stages. Study of the features of the processor used. Development environment.

High Level Language Project Development

Developing projects in a high level language and cross-compiling. Familiarization with the debugging facilities of the IDE. Profiling. Optimizations in C.

Assembly Optimizations

Assembly coding. Function calling conventions. Calling assembly functions from C. Optimization by coding core modules in assembly.

Memory Map

Understand the memory map of the processor. Optimizations by using internal memory.

Real Time Processing.

Using the ADC and DAC for signal acquisition and play back. Real time filtering.

Mini Project (Compulsory)

The student should do a Mini project based on the above area, and a report should be submitted along with the lab record. A viva–voce will be conducted at the end of semester

Expected Outcome

- 1. Familiarization of DSP project development stages
- 2. Ability to develop applications using DSP based systems
- 3. Understand the use of DSP processors for real time signal processing

TextBook

- 1. Jones D. DSP Laboratory with TI TMS320C54x [Connexions Web site]. January 22, 2004. Available at: <u>http://cnx.rice.edu/content/col10078/1.2/</u>
- 2. The manuals of the IDE and Processor being used.

SEMESTER – II

Syllabus and Course Plan

Course No. Course Name L-T-P Credits Year of Introduction

01EC6302 Estimation And Detection Theory

> 3-1-0 4 2015

Course Objectives

- 1. Familiarize the basic concepts of detection theory, decision theory and elementary hypothesis testing
- 2. Acquire knowledge about parameter estimation, and linear signal waveform estimation
- 3. Get a broad overview of applications of detection and estimation

Syllabus

Detection theory, Hypothesis testing, Detection with unknown signal parameters, Non parametric detection, Parameter estimation, Cramer-Rao lower bound, Linear Signal Waveform Estimation, Levinson Durbin and innovation algorithms, Applications of detection and estimation.

Expected Outcome

- 1. Understand Signal detection in the presence of noise
- 2. Understand the basic concepts of estimation theory
- 3. Ability to apply the concepts of estimation and detection in various signal processing applications

References

- **1.** S.M. Kay, Fundamentals of Statistical Signal Processing: Detection Theory, Prentice Hall, 1998
- 2. S.M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory, Prentice Hall, 1993
- 3. H.L. Van Trees, Detection, Estimation and Modulation Theory, Part I, Wiley, 1968.
- 4. H.V. Poor, An Introduction to Signal Detection and Estimation, 2nd edition, Springer, 1994.
- 5. L.L. Scharf, Statistical Signal Processing, Detection and Estimation Theory, Addison-Wesley:1990

COURSE PLAN

Module Contents Hours Allotted % of Marks in End-Semester Examination

Detection Theory, Decision Theory, and Hypothesis Testing: Elementary hypothesis testing, Neyman-Pearson Theorem, Minimum probability of error, Bayes risk, Multiple hypothesis testing

10 15

П

Matched filter, Composite hypothesis testing: Generalized likelihood-ratio test. Detection of Signals with unknown Amplitude, Chernoff bound

9

15 FIRST INTERNAL EXAM

Parameter Estimation: Minimum Variance Unbiased Estimator, Cramer-Rao lower bound, Fisher information matrix, Linear Models, Best Linear Unbiased Estimator.

9 15

IV

Maximum Likelihood Estimation, Invariance principle, Least Square Estimation, Non-linear least square estimation, Minimum mean square estimation, Minimum mean absolute error, Maximum A Posteriori Estimators

9 15

SECOND INTERNAL EXAM

v

Linear Signal Waveform Estimation: Wiener Filter, Kalman Filter, Choosing an estimator

10 20

VI

Cluster: 1

Branch: Electronics & Communication Engineering

Applications of detection and estimation: Applications in diverse fields such as communications, system identification, adaptive filtering, pattern recognition, speech processing, and image processing

9 20 END SEMESTER EXAM

Course No. Course Name L-T-P Credits Year of Introduction

01EC6304 Digital Image Processing

> 3-0-0 3 2015

Course Objectives

- 1. Understand the various steps in digital image processing.
- 2. Get a thorough understanding of digital image representation and processing techniques.
- 3. Ability to process the image in spatial and transform domain for better enhancement.

Syllabus

Image processing fundamentals, Two-dimensional transform techniques, Image representation and sampling, Image enhancement techniques, Image restoration techniques, Image and video compression standards, Image description and recognition, Mathematical morphology, Computer tomography, Image texture analysis

Expected Outcome

- 1. Understand various techniques for image representation
- 2. Understand various low level image processing techniques including reconstruction from Projections
- **3.** Understand the fundamentals of high level image processing

References

- 1. Gonzalez and Woods, Digital image processing, Prentice Hall, 2002.
- 2. A. K. Jain, Fundamentals of digital image processing, Prentice Hall of India, 1989.
- **3.** M. Haralick, and L.G. Shapiro, Computer and Robot Vision, Vol-1, Addison Wesley, Reading, MA, 1992

COURSE PLAN

Module Contents Hours Allotted % of Marks in End-Semester Examination

Image processing fundamentals. Two dimensional orthogonal transforms - DFT, FFT, WHT, Haar transform, KLT, DCT, Hough Transform.

15

8

П

Image representation - Gray scale and colour images. Image sampling and quantization. Image enhancement - filters in spatial and frequency domains, histogram-based processing, homomorphic filtering.

6 15 FIRST INTERNAL EXAM III

Edge detection - non parametric and model based approaches, LOG filters, localization problem. Image Restoration - PSF, circulant and block - circulant matrices, deconvolution, restoration using inverse filtering, Wiener filtering and maximum entropy-based methods.

> 15 IV

7

Image and Video Compression Standards: Lossy and lossless compression schemes: Transform Based, Sub-band Decomposition, Entropy Encoding, JPEG, JPEG2000, MPEG. Image description and recognition - boundary detection, chain coding, segmentation and thresholding methods.

7 15

SECOND INTERNAL EXAM

Mathematical morphology - binary morphology, dilation, erosion, opening and closing, duality relations, gray scale morphology, applications such as hit-and-miss transform, thinning and shape decomposition.

Cluster: 1

Branch: Electronics & Communication Engineering

7 20

VI

Computer tomography - parallel beam projection, Radon transform, and its inverse, Back-projection operator, Fourier-slice theorem, CBP and FBP methods, ART, Fan beam projection. Image texture analysis - co-occurrence matrix, measures of textures, statistical models for textures.

7 20 END SEMESTER EXAM

Course No.	Course Name	L-T-P	Credits	Year of Introduction					
01EC6306	Multirate Systems And Wavelets	3-0-0	3	2015					
	Course Objectives								

- 1. To familiarize with wavelet theory, its implementation and representation
- 2. To understand the fundamentals of multirate signal processing and its applications
- 3. To study the theory and construction of wavelets and its practical implementations

Syllabus

Fundamentals of multirate signal processing, Filter banks, Wavelet transform – continuous and discrete, Polyphase implementation, Designing orthogonal wavelet systems, Biorthogonal wavelets, Parametric design of orthogonal and biorthogonal wavelets

Expected Outcome

- 1. Design and implement perfect reconstruction filter bank systems
- 2. Implement multiphase and polyphase representation.
- 3. Design and implement wavelet based systems.
- 4. Design a compression or denoising system using wavelets

References

- 1. P. P. Vaidyanathan, Multirate Systems & Filter banks , Prentice Hall
- 2. K. P. Soman, K. I. Ramachandran, N. G. Resmi, PHI, Insight into wavelets From theory to practice
- 3. G. Strang& T. Nguyen , Wavelets and Filter bank, Wellesly-Cambridge
- 4. M. Vetterli & J. Kovacevic, Wavelets and sub band coding, Prentice Hall

Cours	Course No. Course Name L-T-P Credits Yea				ar of Inti	roduction			
	COURSE PLAN								
Module	Contents						% of Marks in End-Semester		
I	 Fundamentals of Multirate systems: Basic multirate operations and their spectral representation. Fractional Sampling rate alteration, Interconnection of building blocks, Noble identities, polyphase representations, Efficient structures for decimation and interpolation filters. 						15		
II	Uniform DFT filter banks, efficient structures for fractional decimation, Multistage implementations, Applications of multirate systems, 2- channel QMF filter banks, Errors in the QMF bank, conditions for perfect reconstruction, polyphase implementation, M- channel filter banks.					7	15		
		FIRST II	NTERNAL EX	AM					
111	Fourier Discret	et Transforms: Continuous wave transform, uncertainty principle e wavelet transform: Haar scal chies wavelets.	e and time-fre	quency tiling,	e	7	15		
IV	-	ing orthogonal wavelet system to filter banks, computing and ns.				7	15		
		SECOND	INTERNAL E	XAM					
v	Biorthogonal wavelets: Biorthogonality in vector space, biorthogonal wavelet systems, construction of biorthogonal wavelet systems. Frequency domain approach for designing wavelets: derivation of Daubechies wavelets.					8	20		
VI	Parametric design of orthogonal and biorthogonal wavelets, wavelet packet analysis, lifting schemes, Applications of wavelets in compression and denoising.					6	20		
	1	END S		XAM		<u> </u>			

Course No.	Course Name	L-T-P	Credits	Year of Introduction
01EC6312	Adaptive Signal Processing	3-0-0	3	2015

Course	No. Course Name	L-T-P	Credits	Yea	ar of In	troduction		
Course Objectives 1. Introduction to the goal and basics of adaptive signal processing. 2. Familiarize with the design and analysis of various adaptive algorithms and filters 3. Get an overall picture about applications of adaptive filters in various fields Syllabus Introduction to adaptive signal processing, LMMSE filters – Wiener and Kalman, Adaptive filters – LMS and RLS, Lattice filters, Tracking performance of time varying filters, Adaptive filters, Applications								
	Exp	ected Outco	me					
2	 Understand basic concepts of Design and analyse converge of different adaptive algorithms Ability to develop adaptive system 	nce issues, co and filters	omputational	comple	xities	and optimality		
		References						
2. D P 3. J	. Haykin. (1986). Adaptive Filters imitris G. Manolakis, Vinay K. In rocessing,McGraw Hill (2000) ones D. Adaptive Filters [C t: <u>http://cnx.rice.edu/content/col10</u>	gle, Stephan onnexions V	M Krgon: St					
	C	OURSE PLA	N					
Module	Module Hours Allotted Semester End-Semester							
á	Correlation matrix and its properties, analysis of matrix, structure of matrix and eigen vectors. Spectral decomp	and relation w	vith its eigen v	alues	6	15		

	Complex Gaussian processes.		
II	LMMSE Filters: Goal of adaptive signal processing, some application scenarios, problem formulation, MMSE predictors, LMMSE predictor, orthogonality theorem (concept of innovation processes), Weiner filter, Yule-walker equation, unconstrained Weiner filter (in z domain),	7	15

definite matrices and their properties their physical significance.

Course No. Course N		Course Name	L-T-P	Credits	Year o	f Introduction	
	recurs	ive Weiner filter (using innovation	process).				
	•	FIRST INT	ERNAL EX	AM		·	
Ш	compa recursi	n filter, recursions in Kalman filter arison of Kalman and weiner filters ions based on the steepest desce convergence, rate of convergenc	. Adaptive f nt and New	ilters - Filters		7 15	
IV	 IV LMS filter, mean and variance of LMS, the MSE of LMS and misadjustment, Convergence of LMS. RLS recursions, assumptions for RLS, convergence of RLS coefficients and MSE. Lattice filters - Filter based on innovations, generation of forward and backward innovations, forward and reverse error recursions. 					3 15	
		SECOND IN	ITERNAL E	XAM			
v	Levins perforr	nentation of Weiner, LMS and RLS on Durbin algorithm, reverse Levi mance of the time varying filters - LS filters. Degree of stationarity an tions.	nson Durbir Tracking pe	algorithm. Tr	racking	7 20	
VI	VIApplications: System identification, channel equalization, noise and echo cancellation. Applications in array processing, beam forming.720					7 20	
	•	END SE	MESTER EX	MAX	!	·	

Course No. Course Name L-T-P Credits Year of Introduction

01EC6314 Audio Signal Processing

> 3-0-0 3 2015

Course Objectives

- 1. Study of Perception of Sound
- 2. Study of Audio Compression Schemes
- 3. Study of Audio Classification
- 4. Study of Hearing impairment and Hearing aids

Syllabus

Signal Processing Models of Audio Perception, Psycho-acoustic analysis, Spatial Audio Perception and rendering, Room acoustics, Audio compression methods, Parametric Coding of Multi-channel audio, Transform coding of digital audio, audio quality analysis, Music Classification, Hearing aids

Expected Outcome

- 1. Learn Signal processing models of sound perception and application of perception models in audio signal processing.
- 2. Acquire ability to implement audio compression algorithms and standards.
- 3. Acquire knowledge of audio classification algorithms.
- **4.** Understand the signal processing algorithms for hearing aids.

References

- 1. Audio Signal Processing and Coding, by Andreas Spanias, Ted Painter and Venkittaram Atti, Wiley-Inter Science publication, 2006
- 2. Zhouyu Fu; Guojun Lu; Kai Ming Ting; Dengsheng Zhang; , "A Survey of Audio-Based Music Classification and Annotation," Multimedia, IEEE Transactions on, vol.13, no.2, pp.303-319, April 2011doi: 10.1109/TMM.2010.2098858
- 3. Scaringella, N.; Zoia, G.; Mlynek, D.; "Automatic genre classification of music content: a survey," Signal Processing Magazine, IEEE, vol.23, no.2, pp.133-141, March 2006 doi:10.1109/MSP.2006.1598089
- 4. Loizou, P. (1998). <u>"Mimicking the human ear,"</u> IEEE Signal Processing Magazine, 15(5), 101-130.

Cluster: 1

COURSE PLAN

Module Contents Hours Allotted % of Marks in End-Semester Examination

Signal Processing Models of Audio Perception: Basic anatomy of hearing System : Outer ear, middle ear and inner ear, Cochlea and signal processing in cochlea, Auditory Filter Banks, Gamma-tone filters, Bark Scale, Mel frequency scale, Psycho-acoustic analysis: Critical Band Structure, Absolute Threshold of Hearing, Simultaneous Masking, Temporal Masking, Quantization Noise Shaping, MPEG psycho-acoustic model.

7 15

II

Spatial Audio Perception and rendering: The physical and psycho-acoustical basis of sound localization and space perception. Head related transfer functions, Source localization and beam forming with arrays of microphones. Stereo and multi-channel audio, Sound Filed Synthesis, Spatial audio standards. Room acoustics: Sound propagation in rooms. Modeling the influence of short and long term reverberation. Modeling room impulse responses and head related impulse responses.

7

15

FIRST INTERNAL EXAM

Audio compression methods: Sampling rate and bandwidth requirement for digital audio, Redundancy removal and perceptual irrelevancy removal, Loss less coding, sub-band coding, sinusoidal coding, Transform coding. Parametric Coding of Multi-channel audio: Mid- Side Stereo, Intensity Stereo, Binaural Cue Coding.

7 15

IV

Transform coding of digital audio:MPEG2-AAC coding standard, MDCT and its properties, Pre-echo and pre-echo suppression, psycho-acoustic modeling, adaptive quantization and bit allocation methods, Loss less coding methods. Audio quality analysis: Objective analysis methods- PEAQ, Subjective analysis methods - MOS score, MUSHRA score

7 15

Cluster: 1

Branch: Electronics & Communication Engineering

SECOND INTERNAL EXAM

Music Classification: Music features: Genre, Timbre, Melody, Rhythm, Audio features for Music Classification, Low-level, Mid- Level and Song level classification features, Similarity measures for classification, Supervised Classifiers : k NN, GMM, HMM, and SVM based classifiers.

7 20

VI

Hearing aids: Hearing loss, digital hearing aids, Cochlear implants: Electrode design, Simulation methods, transmission link and signal processing, Types of cochlear implants, Performance analysis of cochlear implants.

7 20 END SEMESTER EXAM

Course No. Course Name L-T-P Credits Year of Introduction

01EC6316

Pattern Recognition And Machine Learning

3-0-0 3 2015

Course Objectives

- 1. To introduce the basic concepts and techniques of machine learning to pattern recognition
- 2. To design and applications of machine learning to pattern recognition
- **3.** To understand and implement classical algorithms in pattern recognition and machine learning

Syllabus

Introduction to Probability Theory, Supervised and unsupervised learning, Parametric and Nonparametric methods, Probability distributions, Hidden Markov models for sequential data classification, Linear models for regression and classification, Clustering

Expected Outcome

- **1.** Understand and compare the various approaches to machine learning and pattern recognition implementations
- **2.** Describe and utilize a range of techniques for designing machine learning and pattern recognition systems for real-world applications
- 3. Design of classification and regression systems.

References

- 1. C. M. Bishop, Pattern Recognition and Machine Learning, Springer
- 2. R. O. Duda, P. E. Hart and D. G. Stork, Pattern Classification and scene analysis, John Wiley Tom Mitchell, <u>Machine Learning</u>, McGraw-Hill.

COURSE PLAN

Module Contents Hours Allotted % of Marks in End-Semester Examination

Introduction to Probability Theory, Decision Theory and Information Theory. Concepts of learning, Supervised and unsupervised learning, Curse of dimensionality, Parametric and Non-parametric methods.

8 15

Ш

Probability distributions - Gaussian distribution, Maximum-Likelihood estimation, Maximum Aposteriori Estimation, Bayesian inference, Mixture of Gaussians, Nearest-neighbour methods.

6 15 FIRST INTERNAL EXAM III

Hidden Markov models for sequential data classification - Discrete hidden Markov models, Continuous density hidden Markov models. Dimension reduction methods - Fisher discriminant analysis, Principal component analysis.

15 IV

7

Non-parametric techniques for density estimation - Parzen-window method, K-Nearest Neighbour method. Non-metric methods for pattern classification - Non-numeric data or nominal data, Decision trees.

7 15

SECOND INTERNAL EXAM

V

Linear models for regression and classification, Perceptron, Artificial Neural networks, Support Vector Machines.

7 20

Cluster: 1

Branch: Electronics & Communication Engineering

VI

Unsupervised learning. Clustering - Criterion functions for clustering, Algorithms for clustering: K-means and Hierarchical methods.

7 20 END SEMESTER EXAM

Course No.	Course Name	L-T-P	Credits	Year of Introduction
01EC6122	Design Of VLSI Systems	3-0-0	3	2015

Course Objectives

- 1. Understand the basics of CMOS Inverter and other Logic Design Techniques
- 2. Get a feel of current design technology
- 3. In-depth knowledge about various memory elements

Syllabus

CMOS Inverter - Behavior and Performance, CMOS Circuit and Logic Design, Advanced techniques in CMOS Logic Circuits, Arithmetic Circuits in CMOS VLSI- Adders, High speed adders, Multipliers, Low power design, Designing Memory and Array Structures, Addressable or Associative Memories, Sense Amplifier

Expected Outcome

- 1. Understand the basics of VLSI Design
- 2. Understand the working of high speed adders and multipliers
- 3. Understand, various methods in the design of memory elements

References

- 1. John P. Uyemura, Introduction to VLSI Circuits and Systems, John Wiley & Sons 2002
- 2. Keshab K. Parthi, VLSI DIGITAL SIGNAL PROCESSING SYSTEMS, John Wiley & Sons 2002
- 3. Neil H. E. Weste, Kamran Eshranghian, Principles of CMOS Design, Pearson Education Asia 2000
- 4. Jan M. Rabaey and et al, DIGITAL INTEGRATED CIRCUITS, Pearson Edn. Inc. 2003

COURSE PLAN

Cour	se No.	Course Name	L-T-P	Credits	Yea	ar of In	troduction
Module		Hours Allotted	% of Marks in End-Semester				
I	Dynam	Inverter - Static Behaviour, Perfonic Behaviour, Power Energy and bgic Design-CMOS Logic structure	Energy Dela			7	15
II	Advanced techniques in CMOS Logic Circuits-Mirror circuits, Pseudo nMOS, Tri-state circuits, Clocked CMOS, Dynamic CMOS Logic circuits, Dual Rail Logic Networks.					7	15
		FIRST IN	TERNAL E	XAM			
III	Adder, based	etic Circuits in CMOS VLSI-Bit Ad Carry Look Ahead Adders, Other fast binary adders, Multipliers-Pa adda multiplier,	High speed	adders-Mult	iplexer	7	15
IV		ower design- Scaling Versus Powe	er consump	tion, Power		7	15
	1	SECOND I	NTERNAL	EXAM			
v	 V Designing Memory and Array Structures - Memory classification, V Memory Core - Read Only Memories, Non-volatile Read Write Memories 					7	20
VI	VIContent - Addressable or Associative Memories, Memory Peripheral Circuits - Address Decoders, Sense Amplifiers.720					20	
	!	END SI	EMESTER	EXAM			

Course No. Course Name L-T-P Credits Year of Introduction

01EC6218 Soft Computing

3-0-0 3 2015

Course Objectives

- 1. To familiarize various components of soft computing.
- 2. To give an overview of fuzzy Logic
- 3. To give a description on artificial neural networks with its advantages and application.

Syllabus

Basics of Fuzzy Sets, Fuzzy relations, Concepts of Artificial Neural Networks, Integration of Fuzzy and Neural Systems, Types of Neural Fuzzy Controllers, Survival of the Fittest, Predicate calculus, Semantic networks, Applications

Expected Outcome

- 1. Identify and describe soft computing techniques and their roles in building intelligent machines
- 2. Recognize the feasibility of applying a soft computing methodology for a particular problem
- 3. Apply fuzzy logic and reasoning to handle uncertainty and solve engineering problems

References

- 1. Chin Teng Lin and C.S. George Lee, (1996) "Neural Fuzzy Systems" A neuro fuzzy synergism to intelligent systems, Prentice Hall International.
- 2. JyhShing Roger Jang, Chuen-Tsai Sun, EijiMizutani, (1997), Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine, Prentice Hall.
- 3. Yanqing Zhang and Abraham Kandel (1998), Compensatory Genetic Fuzzy Neural Network and Their Applications, World Scientific.
- 4. T. J. Ross (1995)-Fuzzy Logic with Engineering Applications, McGraw-Hill, Inc.
- 5. NihJ. Nelsson, "Artificial Intelligence A New Synthesis", Harcourt Asia Ltd., 1998.
- 6. D.E. Goldberg, "Genetic Algorithms: Search, Optimization and Machine Learning", Addison Wesley, N.Y, 1989

COURSE PLAN

Module Contents Hours Allotted % of Marks in End-Semester Examination

Basics of Fuzzy Sets: Fuzzy Relations. Methodology of Fuzzy Control Systems – Basic structure and operation of fuzzy logic control systems.

8 15

II

Concepts of Artificial Neural Networks: Basic Models and Learning rules of ANN's. Single layer perceptron networks – Feedback networks – Supervised and unsupervised learning approaches – Neural Networks in Control Systems.

8

15 FIRST INTERNAL EXAM

Integration of Fuzzy and Neural Systems: Neural Realization of Basic fuzzy logic operations – Neural Network based fuzzy logic inference – Neural Network based Fuzzy Modelling.

15

7

IV

Types of Neural Fuzzy Controllers. Data clustering algorithms - Rule based structure identification-Neuro-Fuzzy controls.

> 6 15

SECOND INTERNAL EXAM

Survival of the Fittest - Fitness Computations - Cross over - Mutation - Reproduction - Rank method – Rank space method AI search algorithm

6 20

VI

Branch: Electronics & Communication Engineering

Predicate calculus - Rules of interference – Semantic networks - Frames - Objects - Hybrid models-Applications.

7 20 END SEMESTER EXAM

Course I	Io. Course Name	L-T-P	Credits	Year of	Introduction
01EC632	2 Optimization Techniques	3-0-0	3		2015
2. 3. One dim	Cours To familiarize the students with the To introduce the students with the To enable the students to select problem ensional- necessary and sufficient ole- Search methods, Gradient back	ne different ty the suitable Syllabus ent conditions	ptimization in pes of optim optimization s, Search r	ization algor technique fo	ithms or the particular adient methods
Technique	wo phase method, Non Linear Pres, Differential Evolution, Harmony S Expe Understand the role of optimizat Understand the working principle	earch Algorith ected Outco	m, Artificial Be me ering design	ee Colony Alg	•
1. Oj	Understand the formulation of th I otimization for Engineering Design 43-2, Kalyanmoy Deb, IIT Kanpu	References			
	CC	DURSE PLAI	N		
Module	Conte	nts		Hours Allotted	% of Marks in End-Semester
l n	ne dimensional – necessary ar ethods- Fibonacci search, golden s ewton- Raphson method, cubic sea	section search			15
II m	ultivariable- necessary and sufficien volutionary method, Hook-Jeevs pat ethods- steepest descent, Newton's ethod.	t conditions, S tern search, G	radient based	k	15

FIRST INTERNAL EXAM

Cours	Course No. Course Name L-T-P Credits			Yea	ar of In	troduction	
Linear Programming - Systems of linear equations & inequalities, Formulation of linear programming problems, Theory of Simplex method, Simplex Algorithm, Two phase method-Duality, Dual Simplex method.						7	15
IVNon Linear Programming- Kuhn-Tucker conditions- Necessary and Sufficiency theorem – transformation method – penalty function method, search method –random search method, linearized search - Frank-Wolf71515						15	
		SECOND IN	TERNAL E	XAM			
V	steps f	neuristic optimization Techniques- for examples related to engineerin unication, control system) optimiza	g (signal pro	ocessing,	tation	7	20
VIDifferential Evolution (DE), Harmony Search Algorithm (HSA), Artificial Bee Colony Algorithm (ABC).					7	20	
		END SEI	MESTER EX	KAM			

Course No.	Course Name	L-T-P	Credits	Year of Introduction					
01EC6392	Mini Project	0-0-4	2	2015					
Course Objectives To make students Design and develop a system or application in the area of their specialization.									
		Approach							
highlight the	shall present two seminars a topic, objectives, methodolog e presentation of the work / ha	ıy, design	and expect	ed results. The second					
	Expe	cted Outco	me						
 Upon successful completion of the mini project, the student should be able to 1. Identify and solve various problems associated with designing and implementing a system or application. 2. Test the designed system or application. 									

Course No.	Course Name	L-T-P	Credits	Year of Introduction				
01EC6394	Image Processing Lab	0-0-2	1	2015				
Course Objectives 1. Implement the various image processing algorithms in MATLAB/C/C++.								
	List of Exercis	es / Expei	riments					
Representatio	on of Grayscale and colour imag	jes						
•	ormations: Grey level transformations of the second strength of the	-	ram equalizat	tion and modifications,				
Image Transf	orms: DFT, DCT, KLT, etc.							
-	g : Fourier descriptors, Linear and aain, Image convolutions, Separab perations		• •	-				
•	on: Edge enhancement by differen n, Edge detector performance eva		ct of noise, eo	dge detection and canny				
•	n: Thresholding algorithms, Perforn abelling, Region growing and regio			5				
	al operation: Erode and dilate as a and other transforms.	max and mi	n operators o	n binary images, open,				
Computed To tomography.	mography: Implementation of FB	P and CBP	algorithms for	r parallel beam				
	Expecte	d Outcom	e					
1.	Familiarisation and implementation	on of various	image proce	ssing algorithms				
	Tex	t Book						
1.	1. Gonzales/ Woods/ Eddins, Digital Image Processing using MATLAB, 2nd edition							

SEMESTER – III

Syllabus and Course Plan

Course No.	Course Name	L-T-P	Credits	Year of Introduction
01EC7311	VLSI Structures For Digital Signal Processing	3-0-0	3	2015

Course Objectives

- 1. The ability to do pipelining and parallel processing.
- 2. Should be able to implement DCT based on architecture transformation.

Syllabus

Representations of DSP algorithms, Loop bound and iteration bound, Retiming, Folding and Unfolding Pipelining and parallel processing of FIR digital filters, combined pipelining and parallel processing of FIR filters for low power, Pipelining and parallel processing of IIR digital filters–Fast convolution-Fast FIR algorithms-implementation of DCT based on algorithm -architecture transformations- Rank order Filters.

Expected Outcome

- 1. Understand Pipelining and Parallel processing
- 2. Understand fast convolution
- **3.** Understand structures useful in DSP implementation.

Text Book

- 1. Keshab K. Parhi, VLSI Digital signal processing Systems: Design and Implementation, John Wiley & Sons, 1999.
- 2. Uwe meyer- Baes, DSP with Field programmable gate arrays, Springer, 2001

COURSE PLAN	
-------------	--

Module	Contents	Allotted	% of Marks in End-Semester
Mo		Hours	% of N End-Se
I	Representations of DSP algorithms. Loop bound and iteration bound. Algorithms for Computing Iteration Bound-LPM Algorithm. Transformation Techniques: Retiming, Folding and Unfolding	8	15
II	Pipelining of FIR digital filters -parallel processing for FIR systems -combined pipelining and parallel processing of FIR filters for low power	8	15

Cours	rse No. Course Name L-T-P Credits N			Ye	ear of Introduction		
		FIRST IN	ITERNAL E	XAM			
III	III Pipelining in IIR filters -parallel processing for IIR filters -combined pipelining and parallel processing of IIR filters.					7	15
IV	IV Fast convolution-Cook-Toom Algorithm- Modified Cook-Toom Algorithm- Winograd Algorithm-cyclic convolution					6	15
	•	SECOND	INTERNAL	EXAM			
v	Parallel FIR filters –Fast FIR Algorithms-Discrete time cosine transform - implementation of DCT based on algorithm -architecture transformations			6	20		
VI	Parallel architectures for Rank Order filters-Odd Even Merge sort architecture-Rank Order filter architecture-Parallel Rank Order filters- Running Order Merge Order Sorter-Low power Rank Order filter.					7	20
		END S	EMESTER	EXAM			

Course No. Course Name L-T-P Credits Year of Introduction

01EC7313 Space Time Coding And Mimo Systems

> 3-0-0 3 2015

Course Objectives

1. To introduce diversity techniques, space time coding and receiver design.

Syllabus

Review of SISO communication, MIMO channels, Multidimensional channel modelling, Capacity of MIMO channels, Diversity, Diversity methods, Combining methods, Space-time code design criteria, Orthogonal space, Maximum-likelihood decoding and maximum ratio combining, Quasi-orthogonal space-time block codes, Space time trellis codes, Spatial multiplexing and receiver design, Using equalization techniques in receiver design, Combined spatial multiplexing and space-time coding, MIMO OFDM

Expected Outcome

- 1. Understand channel models and diversity techniques
- 2. Understand space time coding
- **3.** Understand receiver design

TextBook

- 1. H. Jafarkhani,"Space Time Coding Theory and Practice" Cambridge University Press.
- 2. E. G. Larsson and P. Stoica, "Space Time Block coding for wireless communication". Cambridge University Press.
- 3. C. Oesteges and B. Clerckx, MIMO wireless communications from real world propogation to space time code design. Academic press.

COURSE PLAN

Module Contents Hours Allotted % of Marks in End-Semester Examination

Review of SISO communication- MIMO channel models Transmission model for MIMO channels, Multidimensional channel modeling, Capacity of MIMO channels, Outage capacity.

Ш

8 15

Diversity-Principle, array and diversity gains, Diversity methods, Combining methods-maximum ratio combining, selection combining.

15 FIRST INTERNAL EXAM III

7 15

IV

Space-time code design criteria - Rank and determinant criteria, Trace criterion, Maximum mutual information criterion. Orthogonal space-time block codes - Alamouticode.

Maximum-likelihood decoding and maximum ratio combining, orthogonal designs. Quasi-orthogonal space-time block codes- Pairwise decoding, Rotated QOSTBCs, Space time trellis codes.

6 15 SECOND INTERNAL EXAM

v

Spatial multiplexing and receiver design-Introduction, Spatial multiplexing, Sphere decoding, Using equalization techniques in receiver design, V-BLAST, D-BLAST, Turbo-BLAST

6 20

VI

Combined spatial multiplexing and space-time coding, MIMO OFDM

Cluster: 1

Branch: Electronics & Communication Engineering

8

7 20 END SEMESTER EXAM

Course No.	Course Name	L-T-P	Credits	Year of Introduction				
01EC7213	Secure Communication	3-0-0	3	2015				
studen	 Course Objectives As a graduate level course on secure communication, this course assure to deliver the students, a sound understanding of the number theoretic methods and algorithms used in classical and modern cryptography and their cryptanalysis. 							
Introdi	Syl uction to cryptography - stream an	llabus d block ciph	ers- symmeti	ric and public keys.				
<u></u>	Expecte	d Outcom	e					
proof v 2. Learn 3. Learn 4. Initiate	 Learn theorems on the number and abstract algebra and develops the mathematical proof writing skills. Learn mathematics behind the cryptography and the cryptographic standards. Learn the algorithms used in cryptanalysis and their merits. Initiate the talented students to propose and analyze new algorithms and methods in cryptology 							
	Tex	t Book						
2. Nu	Course in Number Theory and C mber Theory for Computing, Sc ementary Number Theory with A	ong Y Yan,	Springer, 2e).				
	Refe	erences						
 Fundamentals of Cryptology, Henk CA van Tilborg, Kluwer Academic Publishers. Primality Testing and Integer Factorization in Public Key Cryptography, Song Y Yan, Springer, 2e. Public Key Cryptography, ArtoSalomaa, Springer, 2e. An Introduction to Theory of Numbers, I Niven, HS zuckerman etc, John Wiley and Sons, 5e. How to Prove it- A structured Approach, Daniel J Velleman, Cambridge UniversitPress, 2e. 								

COURSE PLAN

Branch: Electronics & Communication Engineering

Module Contents Hours Allotted % of Marks in End-Semester Examination Т

Introduction to cryptography - stream and block ciphers- symmetric and public keys. Basics -Mathematical proofs and methods. Complexity theory: Computational Complexity Classes P, NP- NP-Complete, NP-Hard, BPP, Number theory: primes, divisibility, linear Diophantine equations. congruences, systems of congruence equation, guadratic congruences. Wilson theorem, Fermat's little theorem, Euler's theorem. Multiplicative functions, Primitive roots, Quadratic residues, Legendre symbol, Continued fractions.

> 8 15

> > Ш

Elementary Algebraic Structures: Groups- subgroups, order, homomorphism, cyclic groups, generators. Rings- characteristics, Finite Fields. Polynomial Rings and their algebra over finite fields, multiplicative inverses. Discrete logarithm over groups. Elliptic Curves: as a group defined over finite field, number of points, order and algebra of rational points on elliptic curves.

8

15 FIRST INTERNAL EXAM Ш

Classical Cryptography: Affine ciphers, hill ciphers, digraphs, enciphering matrices. Linear Feedback Shift Registers for PN sequences. Public key Cryptography: One way functions, Hash functions, Knapsack cryptosystems

IV

7 15

RSA, Deffie Helman Key Exchange system, El Gamal's Public key crypto system. Elliptic curve crypto system. Cryptographic standards: DES, AES, MD5, Digital Signature, Zero Knowledge Protocol.

6 15

SECOND INTERNAL EXAM V

Cryptanalysis, Algorithms: Modular exponentiation, Fast group operations on Elliptic curves. Primality test- Fermat's pseudo primality test, Strong prime test, Lucas Pseudo prime test, Elliptic curve test.

6 20 Cluster: 1 Branch: Electronics & Communication Engineering

VI

Integer Factorization- Trial division, Fermat's method, CFRAC. Quadratic and Number Field Sieves. Algorithms for Discrete Logarithms: Baby-step Giant-step alg. Algorithms for Discrete Logarithm on Elliptic curves.

7 20 END SEMESTER EXAM

Course No. Course Name L-T-P Credits Year of Introduction

01 EC7317 Array Signal Processing

3-0-0 3 2015

Course Objectives

- 1. To introduce the student to the various aspect of array signal processing
- 2. Concept of Spatial Frequency is introduced along with the Spatial Sampling Theorem
- 3. Various array design methods and direction of arrival estimation techniques are introduced

Syllabus

Spatial Signals: Signals in space and time, Wavenumber -Frequency Space Spatial Sampling, Sensor Arrays, Uniform Linear Arrays, Beam Pattern Parameters, Array Design Methods, Narrow Band Direction of Arrival Estimation: Non parametric method.

Expected Outcome

- 1. Understands the important concepts of array signal processing
- 2. Understands the various array design techniques
- **3.** Understands the basic principle of direction of arrival estimation techniques

Cluster: 1

Branch: Electronics & Communication Engineering

Stream: Signal Processing

Text Book

- 1. Harry L. Van Trees; Optimum Array Processing; Wiley-Interscience
- 2. Sophocles J Orfandis ; Electromagnetic Waves and Antennas.
- 3. Dan E Dugeon and Don H Johnson; Array Signal Processing: Concepts and Techniques; Prentice Hall
- 4. PetreStoica and Randolph L. Moses; Spectral Analysis of Signals; Prentice Hall

COURSE PLAN Module Contents Hours Allotted % of Marks in End-Semester Examination

Spatial Signals: Signals in space and time, Spatial Frequency Vs Temporal Frequency, Review of Coordinate Systems, Maxwell's Equation, Wave Equation. Solution to Wave equation in Cartesian Coordinate system -Wavenumber vector, Slowness vector

> 8 15

II Wavenumber -Frequency Space Spatial Sampling: Spatial Sampling Theorem- Nyquist Criteria, Aliasing in Spatial frequency domain, Spatial sampling of multidimensional signals.

8 15 FIRST INTERNAL EXAM III

Sensor Arrays: Linear Arrays, Planar Arrays, Frequency - Wavenumber Response and Beam pattern, Array manifold vector, Conventional Beam former, Narrowband beam former.

7 15

IV

Uniform Linear Arrays: Beam pattern in θ , u and ψ -space, Uniformly Weighted Linear Arrays. Beam Pattern Parameters : Half Power Beam Width, Distance to First Null, Location of side lobes and Rate of Decrease, Grating Lobes, Array Steering

15

SECOND INTERNAL EXAM

Array Design Methods : Visible region , Duality between Time -Domain and Space -Domain Signal Processing, Schelkunoff's Zero Placement Method, Fourier Series Method with windowing, Woodward -Lawson Frequency-Sampling Design

6 20

VI

Narrow Band Direction of Arrival Estimation: Non parametric method -Beam forming, Delay and sum Method, Capons Method. Subspace Methods -MUSIC, Minimum Norm and ESPIRIT techniques

7 20 END SEMESTER EXAM

Course No. Course Name L-T-P Credits Year of Introduction

01EC7319 Bioinformatics

3-0-0 3 2015

Course Objectives

- 1. The ability to analyze bio-sequences computationally
- 2. Should be able to use various tools for sequence study
- 3. Should be able to model biological systems.

Syllabus

The cell as basic unit of life-Prokaryotic cell and Eukaryotic cell, Scoring matrices, Analysis of biosequence signals, Systems Biology, Mathematical modelling

Expected Outcome

- 1. Understand the basics of genomes and proteomes
- 2. Understand how various algorithms and tools could be made use of for sequence analysis.
- 3. Understand the properties and modeling of biological systems.

Text Book

- 1. Claverie & Notredame, Bioinformatics A Beginners Guide, Wiley-Dreamtech India Pvt.
- 2. Uri Alon, An Introduction to Systems Biology Design Principles of Biological Circuits, Chapman & Hall/CRC.
- 3. Marketa Zvelebil and Jeremy O. Baum, Understanding Bioinformatics, Garland Science.
- 4. Bryan Bergeron, Bioinformatics Computing, Pearson Education, Inc., Publication.
- 5. D. Mount, Bioinformatics: Sequence & Genome Analysis, Cold spring Harbor press.
- 6. C. A. Orengo D.T. Jones and J. M. Thornton, Bioinformatics- Genes, Proteins And Computers, Taylor & Francis Publishers.
- 7. Achuthsankar S. Nair et al. Applying DSP to Genome Sequence Analysis: The State of the Art, CSI Communications, vol. 30, no. 10, pp. 26-29, Jan. 2007.
- 8. Resources at web sites of NCBI, EBI, SANGER, PDB etc.

COURSE PLAN

Module Contents Hours Allotted % of Marks in End-Semester Examination

The cell as basic unit of life-Prokaryotic cell and Eukaryotic cell - Central Dogma: DNA-RNA-Protein, Human Genome Project, SNP, Bioinformatics databases, Homologus, orthologus & paralogus sequences

> 8 15

> > Ш

Scoring matrices- PAM and BLOSUM matrices, pairwise sequence alignments: Needleman & Wuncsh, Smith & Waterman algorithms for pairwise alignments. BLAST and FASTA. Multiple sequence alignments (MSA) CLUSTALW. Basic concepts of phylogeny

8 15 FIRST INTERNAL EXAM III

Computational approaches for bio-sequence analysis - Mapping bio-sequences to digital signals -various approaches -indicator sequences -distance signals -use of clustering to reduce symbols in amino acid sequences.

IV

7 15

Analysis of bio-sequence signals -case study of spectral analysis for exon location, chaos game representation of bio-sequences

6 15

SECOND INTERNAL EXAM

Systems Biology: System Concept- Properties of Biological systems, Self-organization, emergence, chaos in dynamical systems, linear stability, bifurcation analysis, limit cycles, attractors, stochastic and deterministic processes, continuous and discrete systems, modularity and abstraction, feedback, control analysis

Branch: Electronics & Communication Engineering

20

VI

Mathematical modeling; Biological Networks- Signaling pathway, GRN, PPIN, Flux Balance Analysis, Systems biology v/s synthetic biology

7 20 **END SEMESTER EXAM**

Course No.	Course Name	L-T-P	Credits	Year of Introduction				
01EC7315	Computer Vision	3-0-0	3	2015				
	Course	Objective	5					
1.	 Introduce the standard computer vision problems and identify the solution methodologies. 							
	s	Syllabus						
•	Image Formation, Depth estimation and multiview cameras, Shape from X, feature extraction, Segmentation, Pattern analysis, Motion Analysis, Object Detection and Recognition.							
	Expec	ted Outco	me					
2. Unders	stand and implement the algorithm stand and implement the various st on/recognition methods.							
	Text Book							
 Computer Vision: Algorithms and Applications, Richard Szeliski, Springer 2010 Computer vision: A modern approach, by Forsyth and Ponce. Prentice Hall, 2002. Computer & Machine Vision: Theory Algorithms Practicalities, E. R. Davies, ELSEIVER, Academic Press, 2012 Multiple View Geometry in Computer Vision, Richard Hartley and Andrew Zisserman, Second Edition, Cambridge University Press, March 2004 								

Cour	Course No. Course Name L-T-P Credits Ye				Yea	ar of Introduction	
	COURSE PLAN						
Module	Contents						% of Marks in End-Semester
I	Fundamentals of Image Formation, Transformation: Orthogonal, Euclidean, Affine, Projective, etc. Perspective Projection, Homogeneous Coordinates, Vanishing points, Orthographic projection, Parallel Projection. Photometric image formation, The digital camera.					7	15
II	 Depth estimation and Multiview cameras: Binocular Stereopsis: Camera and Epipolar Geometry; Homography, Rectification, RANSAC, 3-D reconstruction framework; Auto-calibration. Shape from X: Light at Surfaces; Phong Model; Reflectance Map; Albedo estimation; Photometric Stereo; Use of Surface Smoothness Constraint; Shape from Texture, color, motion and edges. 					8	15
	•	FIRST INT	ERNAL EX	AM			
III	Transf SIFT, S	e Extraction: Edges - Canny, LOG orm), Corners - Harris and Hessia SURF, HOG, Scale-Space Analysi ian derivative filters, Gabor Filters	n Affine, Or s- Image Py	ientation Hist		7	15
IV	Image Segmentation and Pattern Analysis : Image Region Growing, Edge Based approaches to segmentation, Graph-Cut, Mean-Shift, MRFs, Clustering: K-Means, Mixture of Gaussians, Dimensionality Reduction: PCA, LDA, ICA; Non-parametric methods.				7	15	
	SECOND INTERNAL EXAM						
V	Motion Analysis: Background Subtraction and Modeling, Optical Flow, KLT, Spatio-Temporal Analysis, Dynamic Stereo; Motion parameter estimation.				6	20	
VI	Object Detection and Recognition: Face detection, Pedestrian detection, Face recognition, Eigen faces, Active appearance and 3D shape models, Instance recognition, Category recognition, Context and scene understanding.					7	20
	<u> </u>	END SEI		KAM	ļ		

Course No.	Course Name	L-T-P	Credits	Year of Introduction
01EC7391	Seminar II	0-0-2	2	2015
	•	•		

Course Objectives

To make students

- 1. Identify the current topics in the specific stream.
- 2. Collect the recent publications related to the identified topics.
- 3. Do a detailed study of a selected topic based on current journals, published papers and books.
- 4. Present a seminar on the selected topic on which a detailed study has been done.
- 5. Improve the writing and presentation skills.

Approach

Students shall make a presentation for 20-25 minutes based on the detailed study of the topic and submit a report based on the study.

Expected Outcome

Upon successful completion of the seminar, the student should be able to

1. Get good exposure in the current topics in the specific stream.

- 2. Improve the writing and presentation skills.
- 3. Explore domains of interest so as to pursue the course project.

Course No.	Course Name	L-T-P	Credits	Year of Introduction
01EC7393	Project (Phase 1)	0-0-12	6	2015

Course Objectives

To make students

- 1. Do an original and independent study on the area of specialization.
- 2. Explore in depth a subject of his/her own choice.
- **3.** Start the preliminary background studies towards the project by conducting literature survey in the relevant field.
- **4.** Broadly identify the area of the project work, familiarize with the tools required for the design and analysis of the project.
- 5. Plan the experimental platform, if any, required for project work.

Approach

The student has to present two seminars and submit an interim Project report. The first seminar would highlight the topic, objectives, methodology and expected results. The first seminar shall be conducted in the first half of this semester. The second seminar is the presentation of the interim project report of the work completed and scope of the work which has to be accomplished in the fourth semester.

Expected Outcome

Upon successful completion of the project phase 1, the student should be able to

- 1. Identify the topic, objectives and methodology to carry out the project.
- **2.** Finalize the project plan for their course project.

SEMESTER – IV

Syllabus and Course Plan

Course No.	Course Name	L-T-P	Credits	Year of Introduction				
01EC7394	Project (Phase II)	0-0-23	12	2015				
Course Objectives								
To con	tinue and complete the project	work ident	ified in proje	ct phase 1.				
		Approach						
There shall be two seminars (a midterm evaluation on the progress of the work and pre submission seminar to assess the quality and quantum of the work). At least one technical paper has to be prepared for possible publication in journals / conferences based on their project work.								
Expected Outcome								
 Upon successful completion of the project phase II, the student should be able to 1. Get a good exposure to a domain of interest. 2. Get a good domain and experience to pursue future research activities. 								