SEMESTER -3

MATHEMATICS - Third Semester B. Tech

(For all branches except Computer Science and Information Technology)

CODE MAT 201	COURSE NAME PARTIAL DIFFERENTIAL EQUATIONS AND COMPLEX ANALYSIS	CATEGORY	L	T	\mathbf{P}	$\begin{aligned} & \text { CREDI } \\ & \mathrm{T} \\ & \hline \end{aligned}$
		BASIC SCIENCE COURSE	3	1	0	4

Preamble: This course introduces basic ideas of partial differential equations which are widely used in the modelling and analysis of a wide range of physical phenomena and has got application across all branches of engineering. To understand the basic theory of functions of a complex variable, residue integration and conformal transformation.

Prerequisite: A basic course in partial differentiation and complex numbers.
Course Outcomes: After the completion of the course the student will be able to

CO 1	Understand the concept and the solution of partial differential equation.
CO 2	Analyse and solve one dimensional wave equation and heat equation.
CO 3	Understand complex functions, its continuity differentiability with the use of Cauchy- Riemann equations.
CO 4	Evaluate complex integrals using Cauchy's integral theorem and Cauchy's integral formula, understand the series expansion of analytic function
CO 5	Understand the series expansion of complex function about a singularity and Apply residue theorem to compute several kinds of real integrals.

Mapping of course outcomes with program outcomes

PO's	Broad area
PO 1	Engineering Knowledge
PO 2	Problem Analysis
PO 3	Design/Development of solutions
PO 4	Conduct investigations of complex problems
PO 5	Modern tool usage
PO 6	The Engineer and Society
PO 7	Environment and Sustainability
PO 8	Ethics
PO 9	Individual and team work

PO 10	Communication
PO 11	Project Management and Finance
PO 12	Life long learning

Mapping of course outcomes with program outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	3	3	3	3	2	1				2		2
CO 2	3	3	3	3	2	1				2		2
CO 3	3	3	3	3	2	1				2		2
CO 4	3	3	3	3	2	1				2		2
CO 5	3	3	3	3	2	1				2		2

Assessment Pattern

Bloom's Category	Continuous Assessment Tests(\%)		End Semester Examination(\%)
	$\mathbf{1}$	$\mathbf{2}$	10
Remember	10	10	30
Understand	30	30	30
Apply	30	30	20
Analyse	20	20	10
Evaluate	10	10	
Create			

End Semester Examination Pattern: There will be two parts; Part A and Part B. Part A contain 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which student should answer any one. Each question can have maximum 2 sub-divisions and carry 14 marks.

Course Level Assessment Questions.

Course Outcome 1 (CO1):

1. Form the partial differential equation given $z=x f(x)+y e^{2}$
2. What is the difference between complete integral and singular integral of a partial differential equation
3. Solve $3 z=x p+y q$
4. Solve $\left(p^{2}+q^{2}\right) y=q z$
5. Solve $u_{x}-2 u_{t}=u$ by the method of separation of variables

Course Outcome 2 (CO2):

1. Write any three assumptions in deriving one dimensional wave equations
2. Derive one Dimensional heat equation
3. Obtain a general solution for the one dimensional heat equation $\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial t^{2}}$
4. A tightly stretched flexible string has it's ends fixed at $x=0$ and $x=l$. At $t=0$, the string is given a shape defined by $f(x)=\mu x(l-x)$ where μ is a constant
5. Find the temperature $u(x, t)$ in a bar which is perfectly insulated laterally whose ends are kept at $0^{\circ} C$ and whose initial temperature (in degree Celsius) is $f(x)=$ $x(10-x)$ given that it's length is 10 cm and specific heat is $0.056 \mathrm{cal} / \mathrm{gram}$ deg

Course Outcome 3(CO3):

1. Separate the real and imaginary parts of $f(z)=\frac{1}{1+z}$
2. Check whether the function $f(z)=\frac{\operatorname{Re}\left(z^{2}\right)}{|z|}$ is continuous at $z=0$ given $f(0)=0$
3. Determine a and b so that function $u=e^{-\pi x} \cos a y$ is harmonic. Find it's harmonic conjugate.
4. Find the fixed points of $w=\frac{i}{2 z-1}$
5. Find the image of $|z| \leq \frac{1}{2},-\frac{\pi}{8}<\arg z<\frac{\pi}{8}$ under $w=z^{2}$

Course Outcome 4(CO4):

1. Find the value of $\int_{C} \exp \left(z^{2}\right) d z$ where C is $|z|=1$
2. Integrate the function $\int_{C} \frac{\operatorname{sinz}}{z+4 i z} d z$ where C is $|z-4-2 i|=6.5$
3. Evaluate $\int_{C} \frac{e^{z}}{\left(z-\frac{\pi}{4}\right)^{3}} d z$ where C is $|z|=1$
4. Find the Maclaurin series expansion of $f(z)=\frac{i}{1-z}$ and state the region of convergence.
5. Find the image of $|z|=2$ under the mapping $w=z+\frac{1}{z}$

Course Outcome 5 (CO5):

1. Determine the singularity of $\exp \left(\frac{1}{z}\right)$
2. Find the Laurent series of $\frac{1}{z^{2}(z-i)}$ about $z=i$
3. Find the residues of $f(z)=\frac{50 z}{z^{3}+2 z^{2}-7 z+4}$
4. Evaluate $\int_{C} \tan 2 \pi z d z$ where C is $|z-0.2|=0.2$
5. Evaluate $\int_{0}^{2 \pi} \frac{d \theta}{\sqrt{2}-\cos \theta}$

Syllabus

Module 1 (Partial Differential Equations) (8 hours)

(Text 1-Relevant portions of sections 17.1, 17.2, 17.3, 17.4, 17.5, 17.7, 18.1, 18.2)
Partial differential equations, Formation of partial differential equations -elimination of arbitrary constants-elimination of arbitrary functions, Solutions of a partial differential equations, Equations solvable by direct integration, Linear equations of the first orderLagrange's linear equation, Non-linear equations of the first order -Charpit's method, Solution of equation by method of separation of variables.

Module 2 (Applications of Partial Differential Equations) (10 hours)

(Text 1-Relevant portions of sections $18.3,18.4,18.5$)

One dimensional wave equation- vibrations of a stretched string, derivation, solution of the wave equation using method of separation of variables, D'Alembert's solution of the wave equation, One dimensional heat equation, derivation, solution of the heat equation

Module 3 (Complex Variable - Differentiation) (9 hours)

(Text 2: Relevant portions of sections13.3, 13.4, 17.1, 17.2 , 17.4)
Complex function, limit, continuity, derivative, analytic functions, Cauchy-Riemann equations, harmonic functions, finding harmonic conjugate, Conformal mappings- mappings $w=z^{2}, w=e^{z}$, Linear fractional transformation $w=\frac{1}{z}$, fixed points, Transformation $w=\sin z$
(From sections 17.1, 17.2 and 17.4 only mappings $w=z^{2}, w=e^{z}, w=\frac{1}{z}, w=\sin z$ and problems based on these transformation need to be discussed)

Module 4 (Complex Variable - Integration) (9 hours)

(Text 2- Relevant topics from sections14.1, 14.2, 14.3, 14.4,15.4)
Complex integration, Line integrals in the complex plane, Basic properties, First evaluation method-indefinite integration and substitution of limit, second evaluation method-use of a representation of a path, Contour integrals, Cauchy integral theorem (without proof) on simply connected domain, Cauchy integral theorem (without proof) on multiply connected domain Cauchy Integral formula (without proof), Cauchy Integral formula for derivatives of an analytic function, Taylor's series and Maclaurin series.,

Module 5 (Complex Variable - Residue Integration) (9 hours)
(Text 2- Relevant topics from sections16.1, 16.2, 16.3, 16.4)
Laurent's series(without proof), zeros of analytic functions, singularities, poles, removable singularities, essential singularities, Residues, Cauchy Residue theorem (without proof), Evaluation of definite integral using residue theorem, Residue integration of real integrals integrals of rational functions of $\cos \theta$ and $\sin \theta$, integrals of improper integrals of the form $\int_{-\infty}^{\infty} f(x) d x$ with no poles on the real axis. $\left(\int_{A}^{B} f(x) d x\right.$ whose integrand become infinite at a point in the interval of integration is excluded from the syllabus),

Textbooks:

1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, $44^{\text {th }}$ Edition, 2018.
2. Erwin Kreyszig, Advanced Engineering Mathematics, $10^{\text {th }}$ Edition, John Wiley \& Sons, 2016.

References:

1. Peter V. O'Neil, Advanced Engineering Mathematics, Cengage, $7^{\text {th }}$ Edition, 2012

Assignments

Assignment: Assignment must include applications of the above theory in the concerned engineering branches

Course Contents and Lecture Schedule

No	Topic	No. of Lectures

1	Partial Differential Equations	
1.1	Partial differential equations, Formation of partial differential equations -elimination of arbitrary constants-elimination of arbitrary functions, Solutions of a partial differential equations, Equations solvable by direct integration,	3
1.2	Linear equations of the first order- Lagrange's linear equation, Non-linear equations of the first order - Charpit's method	3
1.3	Boundary value problems, Method of separation of variables.	2
2	Applications of Partial Differential Equations	
2.1	One dimensional wave equation- vibrations of a stretched string, derivation,	1
2.2	solution of the wave equation using method of separation of variables, D'Alembert's solution of the wave equation	4
2.3	One dimensional heat equation, derivation,	1
2.4	solution of the heat equation, (excluding problems in steady state conditions)	4
3	Complex Variable - Differentiation	
3.1	Complex function, limit, continuity, derivative, analytic functions, Cauchy-Riemann equations,	4
3.2	harmonic functions, finding harmonic conjugate,	2
3.3	Conformal mappings- mappingsof $w=z^{2}, w=e^{z}, w=\frac{1}{z}, w=$ sinz.	3
4	Complex Variable - Integration	
4.1	Complex integration, Line integrals in the complex plane, Basic properties, First evaluation method, second evaluation method, use of representation of a path	4
4.2	Contour integrals, Cauchy integral theorem (without proof) on simply connected domain, on multiply connected domain(without proof) .Cauchy Integral formula (without proof),	2
4.3	Cauchy Integral formula for derivatives of an analytic function,	2
4.3	Taylor's series and Maclaurin series.	1
5	Complex Variable - Residue Integration	

5.1	Laurent's series(without proof)	2
5.2	zeros of analytic functions, singularities, poles, removable singularities, essential singularities, Residues,	2
5.3	Cauchy Residue theorem (without proof), Evaluation of definite integral using residue theorem	2
5.4	Residue integration of real integrals - integrals of rational functions of $\cos \theta$ and $\sin \theta$, integrals of improper integrals of the form $\int_{-\infty}^{\infty} f(x) d x$ with no poles on the real axis. $\left(\int_{A}^{B} f(x) d x w h o s e\right.$ integrand become infinite at a point in the interval of integration is excluded from the syllabus),	3

Model Question Paper

(For all branches except Computer Science and Information Technology)

(2019 Scheme)
Reg No: Name: APJ ABDULKALAM TECHNOLOGICAL UNIVERSITY
THIRD SEMESTER B.TECH. DEGREE EXAMINATION (MONTH \& YEAR)

Course Code:
Course Name: PARTIAL DIFFERENTIAL EQUATIONS AND COMPLEX ANALYSIS
MAX.MARKS: 100
DURATION: 3 Hours

PART A

Answer all questions, each carries 3 marks.

1. Derive a partial differential equation from the relation $z=f(x+a t)+g(x-a t)$
2. Solve $\frac{\partial^{2} z}{\partial x \partial y}=x^{2} y$
3. State any three assumptions in deriving the one dimensional wave equation
4. What are the possible solutions of one-dimensional heat equation?
5. If $f(z)=u+i v$ is analytic, then show that u and v are harmonic functions.
6. Check whether $f(z)=\bar{z}$ is analytic or not.
7. Evaluate $\int_{c} \tan z d z$ where c is the unit circle.
8. Find the Taylor's series of $f(z)=\frac{1}{z}$ about $z=2$.
9. What type of singularity have the function $f(z)=\frac{1}{\cos z-\sin z}$
10. Find the residue of $\frac{e^{z}}{z^{3}}$ at its pole.

PART B

Answer any one full question from each module, each question carries 14 marks.

Module-I

11. (a) Solve $x(y-z) p+y(z-x) q=z(x-y)$
(b) Use Charpit's methods to solve $q+x p=p^{2}$
12. (a) Find the differential equation of all spheres of fixed radius having their centers in the $x y$ plane.
(b) Using the method of separation of variables, solve $\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}+u$, where $u(x, 0)=6 e^{-3 x}$.

Module - II

13. (a) Derive the solution of one dimensional wave equation $\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$ with zero boundary conditions and with initial conditions $u(x, 0)=f(x)$ and $\left(\frac{\partial u}{\partial t}\right)_{t=0}=0$.
(b) A homogeneous rod of conducting material of length 100 cm has its ends kept at zero temperature and the temperature initially is $u(x, 0)=\left\{\begin{array}{c}x, 0 \leq x \leq 50 \\ 100-x, 50 \leq x \leq 100\end{array}\right.$. Find the temperature $u(x, t)$ at any time.
14. (a) A tightly stretched string of length l with fixed ends is initially in equilibrium position. It is set vibrating by giving each point a velocity $v_{0} \sin ^{3}(\pi x / l)$. Find the displacement of the string at any time.
(b) An insulated rod of length l has its ends A and B are maintained at $0^{\circ} c$ and $100^{\circ} \mathrm{C}$ respectively under steady state condition prevails. If the temperature at B is suddenly reduced to $0^{0} c$ and maintained at $0^{\circ} c$, Find the temperature at a distance x from A at time t .

Module-III

15. (a) Show that $f(z)=e^{z}$ is analytic for all z. Find its derivative.
(b) Find the image of $|z-2 i|=2$ under the transformation $w=\frac{1}{z}$
16. (a) Prove that the function $u(x, y)=x^{3}-3 x y^{2}-5 y$ is harmonic everywhere. Find its harmonic conjugate.
(b) Find the image of the infinite stripe $0 \leq y \leq \pi$ under the transformation $w=e^{z}$

Module-IV

17. (a) Evaluate $\int_{0}^{2+i}(\bar{z})^{2} d z$, along the real axis to 2 and then vertically to $2+i$
(b) Using Cauchy's integral formula evaluate $\int_{c^{2}} \frac{5 z+7}{z^{2}+2 z-3} d z$, where c is $|z-2|=2$
18. (a) Evaluate $\int_{c} \frac{\sin ^{2} z}{\left(z-\frac{\pi}{6}\right)^{3}} d z$, where C is $|z|=1$.
(b) Expand $\frac{1}{(z-1)(z-2)}$ in the region $|z|<1$

Module- V

19. (a) Expand $f(z)=\frac{z^{2}-1}{z^{2}-5 z+6}$ in $2<|z|<3$ as a Laurent's series.
(b) Using contour integration evaluate $\int_{0}^{2 \pi} \frac{d \theta}{2+\cos \theta}$
20. (a) Use residue theorem to evaluate $\int_{c} \frac{\cos h \pi z}{z^{2}+4} d z$ where are C is $|z|=3$.
(b) Apply calculus of residues to evaluate $\int_{-\infty}^{\infty} \frac{1}{\left(x^{2}+1\right)^{3}} d x$.

DISCRETE MATHEMATICAL STRUCTURES

MAT 203	DISCRETE MATHEMATICAL	CATEGORY	L	T	P	CREDITS
	STRUCTURES	BSC	3	1	0	4

Preamble:

The purpose of this course is to create awareness in students about the basic terminologies used in advanced courses in Computer Science and develop rigorous logical thinking for solving different kinds of problems in Computer Science. This course helps the learner to apply the theory and applications of elementary Counting Principles, Propositional Logic, Predicate Logic, Lattices, Generating Functions, Recurrence Relations and Algebraic Structures eventually in practical applications.

Prerequisite: A sound background in higher secondary school Mathematics

Course Outcomes: After the completion of the course the student will be able to

CO\#	CO
CO1	Check the validity of predicates in Propositional and Quantified Propositional Logic using truth tables, deductive reasoning and inference theory on Propositional Logic (Cognitive Knowledge Level: Apply)
CO2	Solve counting problems by applying the elementary counting techniques - Rule of Sum, Rule of Product, Permutation, Combination, Binomial Theorem, Pigeonhole Principle and Principle of Inclusion and Exclusion (Cognitive Knowledge Level: Apply)
CO3	Classify binary relations into various types and illustrate an application for each type of binary relation, in Computer Science (Cognitive Knowledge Level: Understand)
CO4	Illustrate an application for Partially Ordered Sets and Complete Lattices, in Computer Science (Cognitive Knowledge Level: Apply)
CO5	Explain Generating Functions and solve First Order and Second Order Linear Recurrence Relations with Constant Coefficients (Cognitive Knowledge Level: Apply)
CO6	Illustrate the abstract algebraic systems - Semigroups, Monoids, Groups, Homomorphism and Isomorphism of Monoids and Groups (Cognitive Knowledge Level: Understand)

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												\bigcirc
CO2								$1{ }^{1}$				\checkmark
CO3		13)			$\sqrt{-1}$				I	11	11	\checkmark
CO4		3				12						
CO5					41			3				
CO6												
Abstract POs defined by National Board of Accreditation												
PO\#	Broad PO					PO\#	Broad PO					
PO1	Engineering Knowledge					P07	Environment and Sustainability					
PO2	Problem Analysis					PO8	Ethics					
PO3	Design/Development of solutions					PO9	Individual and team work					
PO4	Conduct investigations of complex problems					PO10	Communication					
PO5	Modern tool usage					PO11	Project Management and Finance					
PO6	The Engineer and Society					PO12	Life long learning					

Assessment Pattern

Bloom's Category\quad Test 1 (\%)	Test 2 (\%)	End Semester Examination Marks (\%)	
	30	30	30
Understand	30	30	30
Apply	40	40	40
Analyze			
Evaluate			
Create			

Mark Distribution

Total Marks	CIE Marks	ESE Marks	ESE Duration
150	50	100	3

Continuous Internal Evaluation Pattern:

Attendance

10 marks
25 marks

Continuous Assessment Tests (Average of Series Tests $1 \& 2$

Internal Examination Pattern:

Each of the two internal examinations has to be conducted out of 50 marks. First series test shall be preferably conducted after completing the first half of the syllabus and the second series test shall be preferably conducted after completing remaining part of the syllabus. There will be two parts: Part A and Part B. Part A contains 5 questions (preferably, 2 questions each from the completed modules and 1 question from the partly completed module), having 3 marks for each question adding up to 15 marks for part A . Students should answer all questions from Part A . Part B contains 7 questions (preferably, 3 questions each from the completed modules and 1 question from the partly completed module), each with 7 marks. Out of the 7 questions, a student should answer any 5.

End Semester Examination Pattern:

There will be two parts; Part A and Part B. Part A contains 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 full questions from each module of which student should answer any one. Each question can have maximum 2 sub-divisions and carries 14 marks.

Syllabus

Module - 1 (Fundamentals of Logic)

Mathematical logic - Basic connectives and truth table, Statements, Logical Connectives, Tautology, Contradiction. Logical Equivalence - The Laws of Logic, The Principle of duality, Substitution Rules . The implication - The Contrapositive, The Converse, The Inverse.

Logical Implication - Rules of Inference. The use of Quantifiers - Open Statement, Quantifier. Logically Equivalent - Contrapositive, Converse , Inverse , Logical equivalences and implications for quantified statement, Implications, Negation .

Module - 2 (Fundamentals of Counting Theory)

The Rule of Sum - Extension of Sum Rule . The Rule of Product - Extension of Product Rule . Permutations. Combinations. The Binomial Theorem (without proof). Combination with Repetition. The Pigeon hole Principle. The Principle of Inclusion and Exclusion Theorem (Without Proof) - Generalization of the Principle. Derangements.

Module-3 (Relations and Functions)

Cartesian Product - Binary Relation. Function - domain, range-one to one function, Imagerestriction. Properties of Relations- Reachability Relations, Reflexive Relations, Symmetric Relations, Transitive relations, Anti-symmetric Relations, Partial Order relations, Equivalence Relations, Irreflexive relations.

Partially ordered Set - Hasse Diagram, Maximal-Minimal Element, Least upper bound (lub), Greatest Lower bound(glb) (Topological sorting Algorithm- excluded). Equivalence Relations and Partitions - Equivalence Class.

Lattice - Dual Lattice, Sub lattice, Properties of glb and lub, Properties of Lattice, Special Lattice, Complete Lattice, Bounded Lattice, Completed Lattice, Distributive Lattice.

Module - 4 (Generating Functions and Recurrence Relations)

Generating Function - Definition and Examples , Calculation techniques, Exponential generating function. First order linear recurrence relations with constant coefficients homogeneous, non-homogeneous Solution. Second order linear recurrence relations with constant coefficients, homogeneous, non-homogeneous Solution.

Module - 5 (Algebraic Structures)

Algebraic system-properties- Homomorphism and Isomorphism. Semi group and monoid cyclic monoid, sub semi group and sub monoid, Homomorphism and Isomorphism of Semi group and monoids. Group- Elementary properties, subgroup, symmetric group on three symbols ,The direct product of two groups, Group Homomorphism, Isomorphism of groups, Cyclicgroup. Rightcosets - Leftcosets. Lagrange's Theorem

Text Book

1. Discrete and Combinatorial Mathematics (An Applied Introduction), Ralph P Grimaldi, B V Ramana, $5^{\text {th }}$ Edition, Pearson

Reference Books

1) Kenneth H. Rosen, Discrete Mathematics and Its Applications with Combinatorics and Graph Theory, Seventh Edition, MGH, 2011
2) Trembly J.P and Manohar R, "Discrete Mathematical Structures with Applications to Computer Science", Tata Mc Graw Hill Pub. Co. Ltd., New Delhi, 2003.
3) Bernard Kolman, Robert C. Busby, Sharan Cutler Ross, "Discrete Mathematical Structures", Pearson Education Pvt Ltd., New Delhi, 2003
4) Kenneth H .Rosen, "Discrete Mathematics and its Applications", 5/e, Tata Mc Graw Hill Pub. Co. Ltd, New Delhi 2003
5) Richard Johnsonbaugh, "Discrete Mathematics", 5/e, Pearson Education Asia, NewDelhi, 2002.
6) Joe L Mott, Abraham Kandel, Theodore P Baker, "Discrete Mathematics for Computer Scientists and Mathematicians", 2/e, Prentice-Hall India, 2009.

Course Level Assessment Questions

Course Outcome 1 (CO1):

1. Show that $\mathrm{R} \vee \mathrm{M}, 7 \mathrm{R} \vee \mathrm{S}, 7 \mathrm{M}, 7 \mathrm{~S}$ cannot exist simultaneously (without using truth table)
2. Represent the following statement in symbolic form "Not every city in Canada is clean". Course Outcome 2 (CO2):
3. How many possible arrangements are there for the letters in MASSASAUGA in which 4 A's are together?
4. Find the number of integers between 1 and 1000 inclusive, which are not divisible by 5 , 6 or 8
Course Outcome 3 (CO3):
5. If $A=\{1,2,3,4\}$, give an example of a relation R that is reflexive and symmetric but not transitive.
6. Let Z be the set of integers. R is a relation called "Congruence Modulo 3 " defined by R $=\{(\mathrm{x}, \mathrm{y}) / \mathrm{x} \in \mathrm{Z}, \mathrm{y} \in \mathrm{Z}, \mathrm{x}-\mathrm{y}$ is divisible by 3$\}$. Show that R is an equivalence relation.

Course Outcome 4 (CO4):

1. Assume $A=\{a, b, c\}$. Let $P(A)$ be its power set and ' \leq ' be the subset relation on the power set. Draw the Hasse diagram of $(\mathrm{P}(\mathrm{A}), \leq)$.
2. What is meant by Bounded Lattice ? Give an example.

Course Outcome 5 (CO5):

1. Solve $a_{r}-3 a_{r-1}-4 a_{r-2}=3 r$ using Generating function method; Given $a_{0}=1, a_{1}=2$.
2. Find the generating function for the sequence $1,3,3^{2}, 3^{3}$ \qquad

Course Outcome 6 (CO6):

1. Prove that the group $\{1,-1, i,-i\}$ is cyclic with generators i and $-i$.
2. State and prove Lagrange's Theorem.

Model Question Paper

QP CODE:

Reg No:

\qquad
Name : \qquad PAGES : 3

APJ ABDULKALAM TECHNOLOGICAL UNIVERSITY

THIRD SEMESTER B.TECH DEGREE EXAMINATION, MONTH \& YEAR

Course Code: MAT 203

Course Name: Discrete Mathematical Structures

Max.Marks :100
Duration: 3 Hrs

PART A

Answer all Questions. Each question carries 3 Marks

1. Show the following implication without constructing the truth table: $\left(P^{\wedge} Q\right) \Rightarrow P \rightarrow Q$
2. Write the negation of the following statement. "If I drive, then I will not walk"
3. What is pigeon hole principle? Explain. If you select any five numbers from 1 to 8 then prove that at least two of them will add up to 9 .
4. In how many ways can the letters of the word ALLAHABAD be arranged ?
5. Show that the divisibility relation '/' is a partial ordering on the set Z^{+}.
6. Consider the functions given by $f(x)=2 x \neq 3$ and $g(x)=x^{2}$. Find (g of $)$ and $(f o g)$.
7. What is meant by exponential generating function? Explain.
8. Provide one example of linear homogeneous recurrence relation. Mention the degree also.
9. What is a monoid ? Explain.
10. Let (A, .) be a group. Show that $(a b)^{-1}=b^{-1} a^{-1}$

PART B

(Answer any one Question from each Module. Each question carries 14 Marks)

11.

(a) Show that $S \vee R$ is tautologically implied by $(P V Q) \wedge(P \rightarrow R) \wedge(Q \rightarrow S)$
(b) Show that from
(ii) $(\exists \mathrm{x})(\mathrm{F}(\mathrm{x}) \wedge \mathrm{S}(\mathrm{x})) \rightarrow(\mathrm{y})(\mathrm{M}(\mathrm{y}) \rightarrow \mathrm{W}(\mathrm{y}))$.
(iii) $(\exists y)(M(y) \wedge\rceil \mathrm{W}(\mathrm{y}))$ the conclusion $(\mathrm{x})(\mathrm{F}(\mathrm{x}) \rightarrow\rceil \mathrm{S}(\mathrm{x}))$ follows.
(8 marks)

OR

12.

(a) Show that $(x)(P(x) \vee Q(x)) \Rightarrow((x) P(x) \vee(\exists x) Q(x))$ using indirect method of

(b) Discuss indirect method of proof. Show that the following premises are inconsistent
(i) If Jack misses many classes through illness, then he fails high school.
(ii) If Jack fails high school, then he is uneducated.
(iii)If Jack reads a lot of books, then he is not uneducated.
(iv) Jack misses many classes through illness and reads a lot of books.
(8 marks)
13.
(a) Explain binomial theorem. Determine the coefficient of $x^{9} y^{3}$ in the expansion of $(x+y)^{12},(x+2 y)^{12}$ and $(2 x-3 y)^{12}$ using binomial theorem.
(6 marks)
(b) How many 5 digit numbers can be formed from the digits $1,2,3,4,5$ using the digits without repetition?
(i) How many of them are even?
(ii) How many are even and greater than 30,000 ?

OR

14.

(a) There are 8 guests in a party. Each guest brings a gift and receives another gift in return. No one is allowed to receive the gift they bought. How many ways are there to distribute the gifts?
(6 marks)
(b) Six papers are set in an examination of which two are mathematical. Only one examination will be conducted in a day. In how many different orders, can the papers be arranged so that
(i) Two mathematical papers are consecutive?
(ii) Two mathematical papers are not consecutive?
(a) Let $\mathrm{A}=\{1,2,3,4, \ldots 11,12\}$ and let R be the equivalence relation on $\mathrm{A} x \mathrm{~A}$ defined by $(a, b) R(c, d)$ iff $a+d=b+c$. Prove that R is an equivalence relation and find the equivalence class of $(2,5)$
(8 marks)
(b) What is a chain lattice? Explain. Also show that every chain is a distributive lattice.
(6 marks)

OR

16.

(a) Suppose $f(x)=x+2, g(x)=x-2$, and $h(x)=3 x$ for $x \varepsilon R$, where R is the set of real numbers. Find $(g \circ f),(f \circ g),(f \circ f)$ and $(g \circ g)$
(8 marks)
(b) Let R and S be two relations on a set A . If R and S are symmetric, Prove that $(\mathrm{R} \cap \mathrm{S})$ is also symmetric.
(a) Solve the recurrence relation $a_{r}-7 a_{r-1}+10 a_{r-2}=0$ for $r \geq 2$; Given $a_{0}=0 ; a_{1}=41$ using generating functions
(b) Solve the recurrence relation $\mathrm{a}_{\mathrm{r}}-4 \mathrm{a}_{\mathrm{r}-1}+4 \mathrm{a}_{\mathrm{r}-2}=(\mathrm{r}+1)^{2}$ using generating function.
(a) Solve $a_{n}-3 a_{n-1}+2 ; a_{0}=1 \quad n \geq 1$, using generating functions.
(8 marks)
(b) Use generating function to solve the following recurrence relation $\mathrm{a}_{\mathrm{n}}=2 \mathrm{a}_{\mathrm{n}-1}+2^{\mathrm{n}}$; with $\mathrm{a}_{0}=2$.
19.
(a) Prove that the set ' Q ' of rational numbers other than 1 forms an abelian group with respect to the operation ' * ' defined by a * $b=a+b-a b$.
(b) Show that the direct product of two group is a group.
20.
(a) Show that the subgroup of a cyclic group is cyclic.
(8 Marks)
(b) Let $\left(\mathrm{A},{ }^{*}\right)$ be a group. Show that $\left(\mathrm{A},{ }^{*}\right)$ is an abelian group if and only if $\mathrm{a}^{2 *} \mathrm{~b}^{2}=\left(\mathrm{a}^{*} \mathrm{~b}\right)^{2}$ for all ' a ' and ' b ' in A
(6 Marks)

TEACHING PLAN

No	Contents	No of Lecture Hrs
Module - 1 (Fundamentals of Logic) (9 hrs)		
1.1	Mathematical logic, Basic Connectives and Truth Table	1
1.2	Statements, Logical Connectives, Tautology, Contradiction	1
1.3	Logical Equivalence, The Laws of Logic	1
1.4	The Principle of duality, Substitution Rules	1
1.5	The implication, The Contrapositive, the Converse, the Inverse	1
1.6	Logical Implication,Rules of Inference, Logical Implication	1
1.7	The use of Quantifiers, Open Statement, Quantifier, Negation	1
1.8	Logically Equivalent, Contrapositive, The Converse, The Inverse	1
1.9	Logical Implications	1
Module - 2 (Fundamentals of Counting Theory) (9 hrs)		
2.1	The Pigeon-hole Principle	1
2.2	The Rule of Sum	1
2.3	Extension of Sum Rule	1
2.4	The Rule of Product	1
2.5	Extension of Product Rule , Permutations	1
2.6	Combinations, Combination with repetition	1
2.7	The Binomial Theorem	1
2.8	The Principle of Inclusion and Exclusion Theorem (Without Proof) Generalization of the Principle $1 / 4$	1
2.9	Derangements	1
Module - 3 (Relations and Functions) (9 hrs)		
3.1	Cartesian Product, Binary Relation, Function, Domain, Range , One to One Function Image - Restriction	1
3.2	Properties, Reachability Relations, Reflexive Relations, Symmetric Relations, Transitive relations, Antisymmetric Relations.	1

3.3	Partial Order relations	1
3.4	Equivalence Relation, Irreflexive Relations.	1
3.5	Partially ordered Set, Hasse Diagram.	1
3.6	Maximal-Minimal Element, Least Upper bound, Greatest Lower Bound	
3.7	Equivalence Relations and Partitions,Equivalence Class	
3.8	Lattice- Dual Lattice, sub lattice, Properties of glb and lub	1
3.9	Properties of Lattice, Special Lattice, Complete Lattice, Bounded Lattice, Completed Lattice, Distributive Lattice	1
Module - 4 (Generating Functions and Recurrence Relations) (9 hrs)		
4.1	Generating Function, Definition and Examples	1
4.2	Exponential Generating Function.	1
4.3	First Order Linear Recurrence Relations with Constant Coefficients (Lecture I)	1
4.4	First Order Linear Recurrence Relations with Constant Coefficients (Lecture II)	1
4.5	Homogeneous Solution	1
4.6	Non homogeneous Solution	1
4.7	Second order linear recurrence relations with constant coefficients	1
4.8	Homogeneous Solution	1
4.9	Non homogeneous Solution	1
Module - 5 (Algebraic Structures)(9 hrs)		
5.1	Algebraic System-Properties, Homomorphism and Isomorphism	1
5.2	Semi group, Monoid, Cyclic monoid	1

5.3	Sub semigroup and sub monoid	1
5.4	Homomorphism and Isomorphism of Semigroup, Monoids and Groups	1
5.5	Elementary Properties, Subgroup, Symmetric group on three symbols	1
5.6	The direct Product of two Groups	1
5.7	Group Homomorphism, Isomorphism, Cyclic group	1
5.8	Right coset, Left coset	

SEMESTER -4

MATHEMATICS - $\mathbf{4}$ th semester

(All branches except Electrical, Electronics, Computer science, Information Technology and Applied Electronics)

CODE	COURSE NAME	CATEGORY	L	T	P	CREDIT
MAT 202	PROBABILITY,STATISTICS AND NUMERICAL METHODS	BASIC SCIENCE COURSE	3	1	0	4

Preamble: This course introduces students to the modern theory of probability and statistics, covering important models of random variables and techniques of parameter estimation and hypothesis testing. A brief course in numerical methods familiarises students with some basic numerical techniques for finding roots of equations, evaluationg definite integrals solving systems of linear equations, and solving ordinary differential equations which are especially useful when analytical solutions are hard to find.

Prerequisite: A basic course in one-variable and multi-variable calculus.
Course Outcomes: After the completion of the course the student will be able to

CO 1	Understand the concept, properties and important models of discrete random variables and,using them, analyse suitable random phenomena.
CO 2	Understand the concept, properties and important models of continuous random variables and,using them, analyse suitable random phenomena.
CO 3	Perform statistical inferences concerning characteristics of a population based on attributes of samples drawn from the population
CO 4	Compute roots of equations, evaluate definite integrals and perform interpolation on given numerical data using standard numerical techniques
CO 5	Apply standard numerical techniques for solving systems of equations, fitting curves on given numerical data and solving ordinary differential equations.

Mapping of course outcomes with program outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	3	2	2	2	2					2		1
CO 2	3	2	2	2	2					2		1
CO 3	3	2	2	2	2					2		1
CO 4	3	2	2	2	2					2		1
CO 5	3	2	2	2	2					2		1

Assessment Pattern

Bloom's Category	Continuous Assessment Tests(\%)		End Semester Examination(\%)
	$\mathbf{1}$	$\mathbf{2}$	10
Remember	10	10	30
Understand	30	30	30
Apply	30	30	20
Analyse	20	20	10
Evaluate	10	10	
Create			

End Semester Examination Pattern: There will be two parts; Part A and Part B. Part A contain 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which student should answer any one. Each question can have maximum 2 sub-divisions and carry 14 marks.

Course Level Assessment Questions

Course Outcome 1 (CO1):

1. Let X denote the number that shows up when an unfair die is tossed. Faces 1 to 5 of the die are equally likely, while face 6 is twice as likely as any other. Find the probability distribution, mean and variance of X.
2. An equipment consists of 5 componets each of which may fail independently with probability 0.15 . If the equipment is able to function properly when at least 3 of the componets are operational, what is the probability that it functions properly?
3. X is a binomial random variable $B(n, p)$ with $n=100$ and $p=0.1$. How would you approximate it by a Poisson random variable?
4. Three balls are drawn at random without replacement from a box containing 2 white, 3 red and 4 black balls. If X denotes the number of white balls drawn and Y denotes the number of red balls drawn, find the joint probability distribution of (X,Y)

Course Outcome 2 (CO2)

1. What can you say about $P(X=a)$ for any real number a when X is a (i) discrete random variable? (ii) continuous random variable?
2. A string, 1 meter long, is cut into two pieces at a random point between its ends. What is the probability that the length of one piece is at least twise the length of the other?
3. A random variable has a normal distribution with standard deviation 10. If the probability that it will take on a value less than 82.5 is 0.82 , what is the probability that it will take on a value more than 58.3?
4. X and Y are independent random variables with X following an exponential distribution with parameter μ and Y following and exponential distribution with parameter λ. Find $P(X+Y \leqslant 1)$

Course Outcome 3(CO3):

1. In a random sample of 500 people selected from the population of a city 60 were found to be left-handed. Find a 95% confidence interval for the proportion of lefthanded people in the city population.
2. What are the types of errors involved in statistical hypothesis testing. Explain the level of risks associated with each type of error.
3. A soft drink maker claims that a majority of adults prefer its leading beverage over that of its main competitor's. To test this claim 500 randomly selected people were given the two beverages in random order to taste. Among them, 270 preferred the soft drink maker's brand, 211 preferred the competitor's brand, and 19 could not make up their minds. Determine whether there is sufficient evidence, at the 5% level of significance, to support the soft drink maker's claim against the default that the population is evenly split in its preference.
4. A nutritionist is interested in whether two proposed diets, $\operatorname{diet} A$ and diet B work equally well in providing weight-loss for customers. In order to assess a difference between the two diets, she puts 50 customers on diet A and 60 other customers on diet B for two weeks. Those on the former had weight losses with an average of 11 pounds and a standard deviation of 3 pounds, while those on the latter lost an average of 8 pounds with a standard deviation of 2 pounds. Do the diets differ in terms of their weight loss?

Course Outcome 4(CO4):

1. Use Newton-Raphson method to find a real root of the equation $f(x)=e^{2 x}-x-$ 6 correct to 4 decimal places.
2. Compare Newton's divided difference method and Langrange's method of interpolation.
3. Use Newton's forward interpolation formula to compute the approximate values of the function f at $x=0.25$ from the following table of values of x and $f(x)$

x	0	0.5	1	1.5	2
$\mathrm{f}(\mathrm{x})$	1.0000	1.0513	1.1052	1.1618	1.2214

4. Find a polynomial of degree 3 or less the graph of which passes thorugh the points $(-1,3),(0,-4),(1,5)$ and $(2,-6)$

Course Outcome 5 (CO5):

1. Apply Gauss-Seidel method to solve the following system of equations

$$
\begin{gathered}
4 x_{1}-x_{2}-x_{3}=3 \\
-2 x_{1}+6 x_{2}+x_{3}=9 \\
-x_{1}+x_{2}+7 x_{3}=-6
\end{gathered}
$$

2. Using the method of least squares fit a straight line of the form $y=a x+b$ to the following set of ordered pairs (x, y) :
$(2,4),(3,5),(5,7),(7,10),(9,15)$
3. Write the normal equations for fitting a curve of the form $y=a_{0}+a_{1} x^{2}$ to a given set of pairs of data points.
4. Use Runge-Kutta method of fourth order to compute $y(0.25)$ and $y(0.5)$, given the initial value problem

$$
y^{\prime}=x+x y+y, y(0)=1
$$

Syllabus

Module 1 (Discrete probability distributions)

9 hours

(Text-1: Relevant topics from sections-3.1-3.4, 3.6, 5.1)

Discrete random variables and their probability distributions, Expectation, mean and variance, Binomial distribution, Poisson distribution, Poisson approximation to the binomial distribution, Discrete bivariate distributions, marginal distributions, Independent random variables, Expectation -multiple random variables.

Continuous random variables and their probability distributions, Expectation, mean and variance, Uniform, exponential and normal distributions, Continuous bivariate distributions, marginal distributions, Independent random variables, Expectation-multiple random variables, i.i.d random variables and Central limit theorem (without proof).

Module 3 (Statistical inference)

(Text-1:Relevant topics from sections-5.4,, 3.6, 5.1,7.2, 8.1, 8.3, 9.1-9.2,9.4)
Population and samples, Sampling distribution of the mean and proportion (for large samples only), Confidence interval for single mean and single proportions(for large samples only). Test of hypotheses: Large sample test for single mean and single proportion, equality of means and equality of proportions of two populations, small sample t-tests for single mean of normal population, equality of means (only pooled t-test, for independent samples from two normal populations with equal variance)

Module 4 (Numerical methods -I)

9 hours

(Text 2- Relevant topics from sections 19.1, 19.2, 19.3, 19.5)
Errors in numerical computation-round-off, truncation and relative error, Solution of equations - Newton-Raphson method and Regula-Falsi method. Interpolation-finite differences, Newton's forward and backward difference method, Newton's divided difference method and Lagrange's method. Numerical integration-Trapezoidal rule and Simpson's $1 / 3$ rd rule (Proof or derivation of the formulae not required for any of the methods in this module)

Module 5 (Numerical methods -II)

9 hours
(Text 2- Relevant topics from sections 20.3, 20.5, 21.1)
Solution of linear systems-Gauss-Siedal and Jacobi iteration methods. Curve fitting-method of least squares, fitting staright lines and parabolas. Solution of ordinary differential equations-Euler and Classical Runge-Kutta method of second and fourth order, AdamsMoulton predictor-correction method (Proof or derivation of the formulae not required for any of the methods in this module)

Text Books

1. (Text-1) Jay L. Devore, Probability and Statistics for Engineering and the Sciences, $8^{\text {th }}$ edition, Cengage, 2012
2. (Text-2) Erwin Kreyszig, Advanced Engineering Mathematics, 10 th Edition, John Wiley \& Sons, 2016.

Reference Books

1. Hossein Pishro-Nik, Introduction to Probability, Statistics and Random Processes, Kappa Research, 2014 (Also available online at www.probabilitycourse.com)
2. Sheldon M. Ross, Introduction to probability and statistics for engineers and
scientists, $4^{\text {th }}$ edition, Elsevier, 2009.
3. T. Veera Rajan, Probability, Statistics and Random processes, Tata McGraw-Hill, 2008
4. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36 Edition, 2010.

Assignments

Assignments should include specific problems highlighting the applications of the methods introduced in this course in physical sciences and engineering.

Course Contents and Lecture Schedule

No	Topic	No. of Lectures
$\mathbf{1}$	Discrete Probability distributions	$\mathbf{9}$ hours
1.1	Discrete random variables and probability distributions, expected value, mean and variance (discrete)	3
1.2	Binomial distribution-mean, variance, Poisson distribution-mean, variance, Poisson approximation to binomial	3
1.3	Discrete bivariate distributions, marginal distributions, Independence of random variables (discrete), Expected values	3
$\mathbf{2}$	Continuous Probability distributions	$\mathbf{9}$ hours
2.1	Continuous random variables and probability distributions, expected value, mean and variance (continuous)	2
2.2	Uniform, exponential and normal distributions, mean and variance of these distributions	4
2.3	Continuous bivariate distributions, marginal distributions, Independent random variables, Expected values, Central limit theorem.	3
$\mathbf{3}$	Statistical inference	$\mathbf{9}$ hours
3.1	Population and samples, Sampling distribution of single mean and single proportion(large samples)	1
3.2	Confidence interval for single mean and single proportions (large samples)	2
3.3	Hypothesis testing basics, large sample test for single proportion, single proportion	2
3.4	Large sample test for equality of means and equality of proportions of two populations	2

3.5	t-distribution and small sample t-test for single mean and pooled t- test for equality of means	2
$\mathbf{4}$	Numerical methods-I	$\mathbf{9}$ hours
4.1	Roots of equations- Newton-Raphson, regulafalsi methods	2
4.2	Interpolation-finite differences, Newton's forward and backward formula,	3
4.3	Newton's divided difference method, Lagrange's method	2
4.3	Numerical integration-trapezoidal rule and Simpson's 1/3-rd rule	2
$\mathbf{5}$	Numerical methods-II	$\mathbf{9}$ hours
5.1	Solution of linear systems-Gauss-Siedal method, Jacobi iteration method	2
5.2	Curve-fitting-fitting straight lines and parabolas to pairs of data points using method of least squares	2
5.3	Solution of ODE-Euler and Classical Runge-Kutta methods of second and fourth order	4
5.4	Adams-Moulton predictor-corrector methods	1

Model Question Paper
 (2019 Scheme)

Reg No:
Total Pages: 4
Name: \qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FOURTH SEMESTER B.TECH DEGREE EXAMINATION
(Month \& year)

Course Code: MAT

Course Name: PROBABILITY, STATISTICS AND NUMERICAL METHODS

(Common to all branches except (i) Electrical and Electronics, (ii) Electronics and Communication, (iii) Applied Electronics and Instrumentation (iv) Computer Science and Engineering (v) Information Technology)
Max Marks :100
Duration : 3 Hours

PART A

(Answer all questions. Each question carries $\mathbf{3}$ marks)

1. Suppose X is binomial random variable with parameters $n=100$ and $p=0.02$. Find $P(X<3)$ using

Poisson approximation to X.
2. The diameter of circular metallic discs produced by a machine is a random variable with mean 6 cm and variance 2 cm . Find the mean area of the discs.
3. Find the mean and variance of the continuous random variable X with probability density function
$f(x)= \begin{cases}2 x-4, & 2 \leq x \leq 3 \\ 0 & \text { otherwise }\end{cases}$
4. The random variable X is exponentially distributed with mean 3. Find $P(X>t+3 \mid X>t)$ where t is any positive real number.
5. The 95% confidence interval for the mean mass (in grams) of tablets produced by a machine is [0.56 0.57], as calculated from a random sample of 50 tablets. What do you understand from this statement?
6. The mean volume of liquid in bottles of lemonade should be at least 2 litres. A sample of bottles is taken in order to test whether the mean volume has fallen below 2 litres. Give a null and alternate hypothesis for this test and specify whether the test would be one-tailed or two-tailed.
7. Find all the first and second order forward and backward differences of y for the following set of (x, y) values: $(0.5,1.13),(0.6,1.19),(0.7,1.26),(0.8,1.34)$
8. The following table gives the values of a function $f(x)$ for certain values of x.

x	0	0.25	0.50	0.75	1
$f(x)$	1	0.9412	0.8	0.64	0.5

Evaluate $\int_{0}^{1} f(x) d x$ using trapezoidal rule.
9. Explain the principle of least squares for determining a line of best fit to a given data
10. Given the initial value problem $y^{\prime}=y+x, \quad y(0)=0$, find $y(0.1)$ and $y(0.2)$ using Euler method.

PART B
 (Answer one question from each module) MODULE 1

11. (a) The probability mass function of a discrete random variable is $p(x)=k x, x=1,2,3$ where k is a positive constant. Find (i)the value of k (ii) $P(X \leq 2)$ (iii) $E[X]$ and (iv) $\operatorname{var}(1-X)$.
(b) Find the mean and variance of a binomial random variable

OR

12. (a) Accidents occur at an intersection at a Poisson rate of 2 per day. what is the probability that there would be no accidents on a given day? What is the probability that in January there are at least 3 days (not necessarily consecutive) without any accidents?
(b) Two fair dice are rolled. Let X denote the number on the first die and $Y=0$ or 1, according as the first die shows an even number or odd number. Find (i) the joint probability distribution of X and Y, (ii) the marginal distributions. (iii) Are X and Y independent?

MODULE 2

13. (a) The IQ of an individual randomly selected from a population is a normal distribution with mean 100 and standard deviation 15. Find the probability that an individual has IQ (i) above 140 (ii) between 120 and 130 .
(b) A continuous random variable X is uniformly distributed with mean 1 and variance $4 / 3$. Find $P(X<0)$

OR

14. (a) The joint density function of random variables X and Y is given by

$$
f(x, y)= \begin{cases}e^{-(x+y)}, & x>0, \quad y>0 \\ 0 & \text { otherwise } .\end{cases}
$$

Find $P(X+Y \leq 1)$. Are X and Y independent? Justify.
(b) The lifetime of a certain type of electric bulb may be considered as an exponential random variable with mean 50 hours. Using central limit theorem, find the approximate probability that 100 of these electric bulbs will provide a total of more than 6000 hours of burning time.

MODULE 3

15. (a) The mean blood pressure of 100 randomly selected persons from a target population is 127.3 units. Find a 95% confidence interval for the mean blood pressure of the population.
(b) The CEO of a large electric utility claims that 80 percent of his $1,000,000$ customers are very satisfied with the service they receive. To test this claim, the local newspaper surveyed 100 customers, using simple random sampling. Among the sampled customers, 73 percent say they are very satisfied. Based on these findings, do you think that the CEO is making a false claim of high satisfaction levels among his customers? Use a 0.05 level of significance.
16. (a) A magazine reported the results of a telephone poll of 800 adult citizens of a country. The question posed was: "Should the tax on cigarettes be raised to pay for health care reform?" The results of the survey were: Out of the 800 persons surveyed, 605 were non-smokers out of which 351 answered "yes" and the rest "no". Out of the remaining 195, who were smokers, 41 answered "yes" and the remaining "no". Is there sufficient evidence, at the 0.05 significance level, to conclude that the two populations smokers and non-smokers differ significantly with respect to their opinions?
(b) Two types of cars are compared for acceleration rate. 40 test runs are recorded for each car and the results for the mean elapsed time recorded below:

	Sample mean	Sample standard deviation
Car A	7.4	1.5
Car B	7.1	1.8

determine if there is a difference in the mean elapsed times of the two car models at 95% confidence level.

MODULE 4

17. (a) Use Newton-Raphson method to find a non-zero solution of $x=2 \sin x$. Start with $x_{0}=1$
(b) Using Lagrange's interpolating polynomial estimate $f(1.5)$ for the following data

x	0	1	2	3
$y=f(x)$	0	0.9826	0.6299	0.5532

OR

18. (a) Consider the data given in the following table

x	0	0.5	1	1.5	2
$f(x)$	1.0000	1.0513	1.1052	1.1618	1.2214

Estimate the value of $f(1.80)$ using newton's backward interpolation formula.
(b) Evaluate $\int_{0}^{1} e^{-x^{2} / 2} d x$ using Simpson's one-third rule, dividing the interval $[0,1]$ into 8 subintervals

MODULE 5

19. (a) Using Gauss-Seidel method, solve the following system of equations

$$
\begin{align*}
20 x+y-2 z & =17 \\
3 x+20 y-z & =-18 \\
2 x-3 y+20 z & =25 \tag{7}
\end{align*}
$$

(b) The table below gives the estimated population of a country (in millions) for during 1980-1995

year	1980	1985	1990	1995
population	227	237	249	262

Plot a graph of this data and fit an appropriate curve to the data using the method of least squares. Hence predict the population for the year 2010.
20. (a) Use Runge-Kutta method of fourth order to find $y(0.2)$ given the initial value problem

$$
\begin{equation*}
\frac{d y}{d x}=\frac{x y}{1+x^{2}}, \quad y(0)=1 \tag{7}
\end{equation*}
$$

Take step-size, $h=0.1$.
(b) Solve the initial value problem

$$
\begin{equation*}
\frac{d y}{d x}=x+y, \quad y(0)=0 \tag{7}
\end{equation*}
$$

in the interval $0 \leq x \leq 1$, taking step-size $h=0.2$. Calculate $y(0.2), y(0.4)$ and $y(0.6)$ using Runge-Kutta second order method, and $y(0.8)$ and $y(1.0)$ using Adam-Moulton predictorcorrector method.

MATHEMATICS - 4

(For Electrical, Electronics and Applied Electronics)

CODE	COURSE NAME	CATEGORY	L	T	P	CREDIT
MAT 204	PROBABILITY, RANDOM					
	PROCESSES AND NUMERICAL					
	METHODS	BASIC SCIENCE COURSE	3	1	0	4

Preamble: This course introduces students to the modern theory of probability and statistics, covering important models of random variables and analysis of random processes using appropriate time and frequency domain tools. A brief course in numerical methods familiarises students with some basic numerical techniques for finding roots of equations, evaluating definite integrals solving systems of linear equations and solving ordinary differential equations which are especially useful when analytical solutions are hard to find.

Prerequisite: A basic course in one-variable and multi-variable calculus.
Course Outcomes: After the completion of the course the student will be able to

CO 1	Understand the concept, properties and important models of discrete random variables and, using them, analyse suitable random phenomena.
CO 2	Understand the concept, properties and important models of continuous random variables and, using them, analyse suitable random phenomena.
CO 3	Analyse random processes using autocorrelation, power spectrum and Poisson process model as appropriate.
CO 4	Compute roots of equations, evaluate definite integrals and perform interpolation on given numerical data using standard numerical techniques
CO 5	Apply standard numerical techniques for solving systems of equations, fitting curves on given numerical data and solving ordinary differential equations.

Mapping of course outcomes with program outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	3	2	2	2	2					2		1
CO 24	3	2	2	2	2					2		1
CO 3	3	2	2	2	2					2		1
CO 4	3	2	2	2	2					2		1
CO 5	3	2	2	2	2					2		1

Assessment Pattern

Bloom's Category	Continuous Assessment Tests(\%)		End Semester Examination(\%)
	$\mathbf{1}$	$\mathbf{2}$	10
Remember	10	30	30
Understand	30	30	30
Apply	30	20	20
Analyse	20	10	10
Evaluate	10		
Create			

End Semester Examination Pattern: There will be two parts; Part A and Part B. Part A contain 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which student should answer any one. Each question can have maximum 2 sub-divisions and carry 14 marks.

Course Level Assessment Questions

Course Outcome 1 (CO1):

1. Let X denote the number that shows up when an unfair die is tossed. Faces 1 to 5 of the die are equally likely, while face 6 is twice as likely as any other. Find the probability distribution, mean and variance of X .
2. An equipment consists of 5 components each of which may fail independently with probability 0.15 . If the equipment is able to function properly when at least 3 of the components are operational, what is the probability that it functions properly?
3. X is a binomial random variable $B(n, p)$ with $n=100$ and $p=0.1$. How would you approximate it by a Poisson random variable?
4. Three balls are drawn at random without replacement from a box containing 2 white, 3 red and 4 black balls. If X denotes the number of white balls drawn and Y denotes the number of red balls drawn, find the joint probability distribution of (X, Y)

Course Outcome 2 (CO2)

1. What can you say about $P(X=a)$ for any real number a when X is (i) a discrete random variable? (ii) a continuous random variable?
2. A string, 1 meter long, is cut into two pieces at a random point between its ends. What is the probability that the length of one piece is at least twice the length of the other?
3. A random variable has a normal distribution with standard deviation 10. If the probability that it will take on a value less than 82.5 is 0.82 , what is the probability that it will take on a value more than 58.3?
4. X and Y are independent random variables with X following an exponential distribution with parameter μ and Y following and exponential distribution with parameter λ. Find $P(X+Y \leqslant 1)$

Course Outcome 3(CO3):

1. A random process $X(t)$ is defined by $\operatorname{acos}(\omega t+\Theta)$ where a and ω are constants and Θ is uniformly distributed in $[0,2 \pi]$. Show that $X(t)$ is WSS
2. How are the autocorrelation function and power spectral density of a WSS process are related to each other?
3. Find the power spectral density of the WSS random process $X(t)$, given the autocorrelation function $R_{X}(\tau)=9 e^{-|\tau|}$
4. A conversation in a wireless ad-hoc network is severely disturbed by interference signals according to a Poisson process of rate $\lambda=0.01$ per minute. (a) What is the probability that no interference signals occur within the first two minutes of the conversation? (b) Given that the first two minutes are free of disturbing effects, what is the probability that in the next minute precisely 1 interfering signal disturbs the conversation? (c) Given that there was only 1 interfering signal in the first 3 minutes, what is the probability that there would be utmost 2 disturbances in the first 4 minutes?

Course Outcome 4(CO4):

1. Use Newton-Raphson method to find a real root of the equation $f(x)=e^{2 x}-x-6$ correct to 4 decimal places.
2. Compare Newton's divided difference method and Lagrange's method of interpolation.
3. Use Newton's forward interpolation formula to compute the approximate values of the function f at $x=0.25$ from the following table of values of x and $f(x)$

x	0	0.5	1	1.5	2
$\mathrm{f}(\mathrm{x})$	1.0000	1.0513	1.1052	1.1618	1.2214

4. Find a polynomial of degree 3 or less the graph of which passes through the points $(-1,3),(0,-4),(1,5)$ and $(2,-6)$

Course Outcome 5 (CO5):

1. Apply Gauss-Seidel method to solve the following system of equations

$$
\begin{gathered}
4 x_{1}-x_{2}-x_{3}=3 \\
-2 x_{1}+6 x_{2}+x_{3}=9 \\
-x_{1}+x_{2}+7 x_{3}=-6
\end{gathered}
$$

2. Using the method of least squares fit a straight line of the form $y=a x+b$ to the following set of ordered pairs (x, y) :

$$
(2,4),(3,5),(5,7),(7,10),(9,15)
$$

3. Write the normal equations for fitting a curve of the form $y=a_{0}+a_{1} x^{2}$ to a given set of pairs of data points.
4. Use Runge-Kutta method of fourth order to compute $y(0.25)$ and $y(0.5)$, given the initial value problem

$$
y^{\prime}=x+x y+y, y(0)=1
$$

Syllabus

Module 1 (Discrete probability distributions) 9 hours

(Text-1: Relevant topics from sections-3.1-3.4, 3.6, 5.1)
Discrete random variables and their probability distributions, Expectation, mean and variance, Binomial distribution, Poisson distribution, Poisson approximation to the binomial distribution, Discrete bivariate distributions, marginal distributions, Independent random variables, Expectation (multiple random variables)

Module 2 (Continuous probability distributions) 9 hours

(Text-1:Relevant topics from sections-4.1-4.4, 3.6, 5.1)

Continuous random variables and their probability distributions, Expectation, mean and variance, Uniform, exponential and normal distributions, Continuous bivariate distributions, marginal distributions, Independent random variables, Expectation (multiple random variables), i. i. d random variables and Central limit theorem (without proof).

Module 3 (Random Processes) 9 hours

(Text-2: Relevant topics from sections-8.1-8.5, 8.7, 10.5)

Random processes and classification, mean and autocorrelation, wide sense stationary (WSS) processes, autocorrelation and power spectral density of WSS processes and their properties, Poisson process-distribution of inter-arrival times, combination of independent Poisson processes(merging) and subdivision (splitting) of Poisson processes (results without proof).

Module 4 (Numerical methods -I) 9 hours

(Text 3- Relevant topics from sections 19.1, 19.2, 19.3, 19.5)

Errors in numerical computation-round-off, truncation and relative error, Solution of equations - Newton-Raphson method and Regula-Falsi method. Interpolation-finite differences, Newton's forward and backward difference method, Newton's divided difference method and Lagrange's method. Numerical integration-Trapezoidal rule and Simpson's $1 / 3$ rd rule (Proof or derivation of the formulae not required for any of the methods in this module)

Module 5 (Numerical methods -II)
9 hours

(Text 3- Relevant topics from sections 20.3, 20.5, 21.1)

Solution of linear systems-Gauss-Seidel and Jacobi iteration methods. Curve fitting-method of least squares, fitting straight lines and parabolas. Solution of ordinary differential equations-Euler and Classical Runge-Kutta method of second and fourth order, AdamsMoulton predictor-correction method (Proof or derivation of the formulae not required for any of the methods in this module)

Text Books

1. (Text-1) Jay L. Devore, Probability and Statistics for Engineering and the Sciences, $8^{\text {th }}$ edition, Cengage, 2012
2. (Text-2) Oliver C. Ibe, Fundamentals of Applied Probability and Random Processes, Elsevier, 2005.
3. (Text-3) Erwin Kreyszig, Advanced Engineering Mathematics, 10 th Edition, John Wiley \& Sons, 2016.

Reference Books

1. Hossein Pishro-Nik, Introduction to Probability, Statistics and Random Processes, Kappa Research, 2014 (Also available online at www.probabilitycourse.com)
2. V.Sundarapandian, Probability, Statistics and Queueing theory, PHI Learning, 2009
3. Gubner, Probability and Random Processes for Electrical and Computer Engineers, Cambridge University Press,2006.
4. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36 Edition, 2010.

Assignments

Assignments should include specific problems highlighting the applications of the methods introduced in this course in physical sciences and engineering.

Course Contents and Lecture Schedule

No	Topic	No. of Lectures
1	Discrete Probability distributions	9 hours
1.1	Discrete random variables and probability distributions, expected value, mean and variance (discrete)	3
1.2	Binomial distribution-mean, variance, Poisson distribution-mean, variance, Poisson approximation to binomial	3
1.3	Discrete bivariate distributions, marginal distributions, Independence of random variables (discrete), Expected values	3
2	Continuous Probability distributions	9 hours
2.1	Continuous random variables and probability distributions, expected value, mean and variance (continuous)	2
2.2	Uniform, exponential and normal distributions, mean and variance of these distributions	4
2.3	Continuous bivariate distributions, marginal distributions, Independent random variables, Expected values, Central limit theorem.	3
3	Random processes	9 hours
3.1	Random process -definition and classification, mean , autocorrelation	2
3.2	WSS processes its autocorrelation function and properties	2
3.3	Power spectral density	2
3.4	Poisson process, inter-distribution of arrival time, merging and splitting	3
4	Numerical methods-I	9 hours
4.1	Roots of equations- Newton-Raphson, regulafalsi methods	2
4.2	Interpolation-finite differences, Newton's forward and backward formula,	3
4.3	Newton's divided difference method, Lagrange's method	2
4.3	Numerical integration-trapezoidal rule and Simpson's 1/3-rd rule	2
5	Numerical methods-II	9 hours
5.1	Solution of linear systems-Gauss-Siedal method, Jacobi iteration	2

	method	
5.2	Curve-fitting-fitting straight lines and parabolas to pairs of data points using method of least squares	2
5.3	Solution of ODE-Euler and Classical Runge-Kutta methods of second and fourth order	4
5.4	Adams-Moulton predictor-corrector method	1

Model Question Paper
 (2019 Scheme)

Reg No: \qquad Total Pages: 3
Name: \qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FOURTH SEMESTER B.TECH DEGREE EXAMINATION
(Month \& year)

Course Code: MAT

Course Name: PROBABILITY, RANDOM PROCESSES AND NUMERICAL METHODS

(For (i) Electrical and Electronics, (ii) Electronics and Communication, (iii) Applied Electronics and Instrumentation Engineering branches)

Max Marks :100
Duration : 3 Hours

PART A
 (Answer all questions. Each question carries $\mathbf{3}$ marks)

1. Suppose X is binomial random variable with parameters $n=100$ and $p=0.02$. Find $P(X<3)$ using Poisson approximation to X.
2. The diameter of circular metallic discs produced by a machine is a random variable with mean 6 cm and variance 2 cm . Find the mean area of the discs.
3. Find the mean and variance of the continuous random variable X with probability density function
$f(x)= \begin{cases}2 x-4, & 2 \leq x \leq 3 \\ 0 & \text { otherwise }\end{cases}$
4. The random variable X is exponentially distributed with mean 3. Find $P(X>t+3 \mid X>t)$ where t is any positive real number.
5. Give any two examples of a continuous time discrete state random processes.
6. How will you calculate the mean, variance and total power of a WSS process from its autocorrelation function?
7. Find all the first and second order forward and backward differences of y for the following set of (x, y) values: $(0.5,1.13),(0.6,1.19),(0.7,1.26),(0.8,1.34)$
8. The following table gives the values of a function $f(x)$ for certain values of x.

x	0	0.25	0.50	0.75	1
$f(x)$	1	0.9412	0.8	0.64	0.5

Evaluate $\int_{0}^{1} f(x) d x$ using trapezoidal rule.
9. Explain the principle of least squares for determining a line of best fit to a given data
10. Given the initial value problem $y^{\prime}=y+x, \quad y(0)=0$, find $y(0.1)$ and $y(0.2)$ using Euler method.

PART B
(Answer one question from each module)
MODULE 1
11. (a) The probability mass function of a discrete random variable is $p(x)=k x, x=1,2,3$ where k is a positive constant. Find (i)the value of k (ii) $P(X \leq 2)$ (iii) $E[X]$ and (iv) $\operatorname{var}(1-X)$.
(b) Find the mean and variance of a binomial random variable

OR

12. (a) Accidents occur at an intersection at a Poisson rate of 2 per day. what is the probability that there would be no accidents on a given day? What is the probability that in January there are at least 3 days (not necessarily consecutive) without any accidents?
(b) Two fair dice are rolled. Let X denote the number on the first die and $Y=0$ or 1 , according as the first die shows an even number or odd number. Find (i) the joint probability distribution of X and Y, (ii) the marginal distributions. (iii) Are X and Y independent ?

MODULE 2

13. (a) The IQ of an individual randomly selected from a population is a normal distribution with mean 100 and standard deviation 15 . Find the probability that an individual has IQ (i) above 140 (ii) between 120 and 130 .
(b) A continuous random variable X is uniformly distributed with mean 1 and variance $4 / 3$. Find $P(X<0)$

OR

14. (a) The joint density function of random variables X and Y is given by

$$
f(x, y)= \begin{cases}e^{-(x+y)}, & x>0, \quad y>0 \\ 0 & \text { otherwise }\end{cases}
$$

Find $P(X+Y \leq 1)$. Are X and Y independent? Justify.
(b) The lifetime of a certain type of electric bulb may be considered as an exponential random variable with mean 50 hours. Using central limit theorem, find the approximate probability that 100 of these electric bulbs will provide a total of more than 6000 hours of burning time.

MODULE 3

15. (a) A random process $X(t)$ is defined by $X(t)=Y(t) \cos (\omega t+\Theta)$ where $Y(t)$ is a WSS process, ω is a constant and Θ is uniformly distributed in $[0,2 \pi]$ and is independent of $Y(t)$. Show that $X(t)$ is WSS
(b) Find the power spectral density of the random process $X(t)=a \sin \left(\omega_{0} t+\Theta\right), \omega_{0}$ constant and Θ is uniformly distributed in $(0,2 \pi)$

OR

16. Cell-phone calls processed by a certain wireless base station arrive according to a Poisson process with an average of 12 per minute.
(a) What is the probability that more than three calls arrive in an interval of length 20 seconds?
(b) What is the probability that more than 3 calls arrive in each of two consecutive intervals of length 20 seconds?
17. (a) Use Newton-Raphson method to find a non-zero solution of $x=2 \sin x$. Start with $x_{0}=1$
(b) Using Lagrange's interpolating polynomial estimate $f(1.5)$ for the following data

$$
\begin{array}{r|cccc}
x & 0 & 1 & 2 & 3 \tag{7}\\
\hline y=f(x) & 0 & 0.9826 & 0.6299 & 0.5532
\end{array}
$$

OR
18. (a) Consider the data given in the following table

x	0	0.5	1	1.5	2
$f(x)$	1.0000	1.0513	1.1052	1.1618	1.2214

Estimate the value of $f(1.80)$ using newton's backward interpolation formula.
(b) Evaluate $\int_{0}^{1} e^{-x^{2} / 2} d x$ using Simpson's one-third rule, dividing the interval [0, 1] into 8 subintervals

MODULE 5

19. (a) Using Gauss-Seidel method, solve the following system of equations

$$
\begin{align*}
20 x+y-2 z & =17 \tag{7}\\
3 x+20 y-z & =-18 \\
2 x-3 y+20 z & =25
\end{align*}
$$

(b) The table below gives the estimated population of a country (in millions) for during 1980-1995

year	1980	1985	1990	1995
population	227	237	249	262

Plot a graph of this data and fit an appropriate curve to the data using the method of least squares. Hence predict the population for the year 2010.

OR

20. (a) Use Runge-Kutta method of fourth order to find $y(0.2)$ given the initial value problem

$$
\begin{equation*}
\frac{d y}{d x}=\frac{x y}{1+x^{2}}, \quad y(0)=1 \tag{7}
\end{equation*}
$$

Take step-size, $h=0.1$.
(b) Solve the initial value problem

$$
\frac{d y}{d x}=x+y, \quad y(0)=0
$$

in the interval $0 \leq x \leq 1$, taking step-size $h=0.2$. Calculate $y(0.2), y(0.4)$ and $y(0.6)$ using Runge-Kutta second order method, and $y(0.8)$ and $y(1.0)$ using Adam-Moulton predictorcorrector method.

CODE	COURSE NAME	CATEGORY	L	T	P	CREDIT
MAT 206	GRAPH THEORY	BSC	3	1	0	4

Preamble: This course introduces fundamental concepts in Graph Theory, including properties and characterisation of graph/trees and graph theoretic algorithms, which are widely used in Mathematical modelling and has got applications across Computer Science and other branches in Engineering.

Prerequisite: The topics covered under the course Discrete Mathematical Structures (MAT 203)

Course Outcomes: After the completion of the course the student will be able to

CO 1	Explain vertices and their properties, types of paths, classification of graphs and trees \& their properties. (Cognitive Knowledge Level: Understand)
CO 2	Demonstrate the fundamental theorems on Eulerian and Hamiltonian graphs. (Cognitive Knowledge Level: Understand)
CO 3	Illustrate the working of Prim's and Kruskal's algorithms for finding minimum cost spanning tree and Dijkstra's and Floyd-Warshall algorithms for finding shortest paths. (Cognitive Knowledge Level: Apply)
CO 4	Explain planar graphs, their properties and an application for planar graphs. (Cognitive Knowledge Level: Apply)
CO 5	Illustrate how one can represent a graph in a computer. (Cognitive Knowledge Level: Apply)
CO 6	Explain the Vertex Color problem in graphs and illustrate an example application for vertex coloring. (Cognitive Knowledge Level: Apply)

Mapping of course outcomes with program outcomes

	PO	PO 2	PO 3	PO 4	PO	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$							\checkmark		\checkmark
CO 2	$\sqrt{ }$	\checkmark	\checkmark	$\sqrt{ }$						\checkmark		\checkmark
CO 3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$						\checkmark		\checkmark
CO 4	$\sqrt{ }$	\checkmark	\checkmark	\checkmark						$\sqrt{ }$		\checkmark
CO 5	$\sqrt{ }$	\checkmark	$\sqrt{ }$							$\sqrt{ }$		\checkmark
CO 6	$\sqrt{ }$	\checkmark	\checkmark			$\sqrt{ }$				\checkmark		\checkmark

Abstract POs defined by National Board of Accreditation			
PO\#	Broad PO	PO\#	Broad PO
PO1	Engineering Knowledge	PO7	Environment and Sustainability
PO2	Problem Analysis	PO8	Ethics
PO3	Design/Development of solutions	PO9	Individual and team work
PO4	Conduct investigations of complex problems	PO10	Communication
PO5	Modern tool usage	PO11	Project Management and Finance
PO6	The Engineer and Society	PO12	Life long learning

Assessment Pattern

Bloom's Category	Continuous Assessment Tests (\%)		End Semester Examination (\%)
	$\mathbf{1}$	$\mathbf{2}$	
Remember	30	30	30
Understand	30	30	40
Apply	40	40	
Analyse			
Evaluate			
Create			

Mark Distribution

Total Marks	CIE Marks	ESE Marks	ESE Duration
150	50	100	3 hours

Continuous Internal Evaluation Pattern:

Attendance	$: 10$ marks
Continuous Assessment Tests	$: 25$ marks

Continuous Assessment Assignment : 15 marks

Internal Examination Pattern:

Each of the two internal examinations has to be conducted out of 50 marks

First Internal Examination shall be preferably conducted after completing the first half of the syllabus and the Second Internal Examination shall be preferably conducted after completing remaining part of the syllabus.

There will be two parts: Part A and Part B. Part A contains 5 questions (preferably, 2 questions each from the completed modules and 1 question from the partly covered module), having 3 marks for each question adding up to 15 marks for part A. Students should answer all questions from Part A. Part B contains 7 questions (preferably, 3 questions each from the completed modules and 1 question from the partly covered module), each with 7 marks. Out of the 7 questions in Part B, a student should answer any 5 .

End Semester Examination Pattern: There will be two parts; Part A and Part B. Part A contain 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which student should answer anyone. Each question can have maximum 2 sub-divisions and carries 14 marks.

Syllabus

Module 1

Introduction to Graphs : Introduction- Basic definition - Application of graphs - finite, infinite and bipartite graphs - Incidence and Degree - Isolated vertex, pendant vertex and Null graph. Paths and circuits - Isomorphism, sub graphs, walks, paths and circuits, connected graphs, disconnected graphs and components.

Module 2

Eulerian and Hamiltonian graphs : Euler graphs, Operations on graphs, Hamiltonian paths and circuits, Travelling salesman problem. Directed graphs - types of digraphs, Digraphs and binary relation, Directed paths, Fleury's algorithm.

Module 3

Trees and Graph Algorithms: Trees - properties, pendant vertex, Distance and centres in a tree - Rooted and binary trees, counting trees, spanning trees, Prim's algorithm and Kruskal's algorithm, Dijkstra's shortest path algorithm, Floyd-Warshall shortest path algorithm.

Module 4

Connectivity and Planar Graphs : Vertex Connectivity, Edge Connectivity, Cut set and Cut Vertices, Fundamental circuits, Planar graphs, Kuratowski's theorem (proof not required), Different representations of planar graphs, Euler's theorem, Geometric dual.

Module 5

Graph Representations and Vertex Colouring : Matrix representation of graphsAdjacency matrix, Incidence Matrix, Circuit Matrix, Path Matrix. Coloring- Chromatic number, Chromatic polynomial, Matchings, Coverings, Four color problem and Five color problem. Greedy colouring algorithm.

Text book:

1. Narsingh Deo, Graph theory, PHI, 1979

Reference Books:

1. R. Diestel, Graph Theory, free online edition, 2016: diestel-graph-theory.com/ basic.html.
2. Douglas B. West, Introduction to Graph Theory, Prentice Hall India Ltd.,2001
3. Robin J. Wilson, Introduction to Graph Theory, Longman Group Ltd.,2010
4. J.A. Bondy and U.S.R. Murty. Graph theory with Applications

Sample Course Level Assessment Questions.

Course Outcome 1 (CO1):

1. Differentiate a walk, path and circuit in a graph.
2. Is it possible to construct a graph with 12 vertices such that two of the vertices have degree 3 and the remaining vertices have degree 4? Justify
3. Prove that a simple graph with n vertices must be connected, if it has more than $\frac{(n-1)(n-2)}{2}$ edges.
4. Prove the statement: If a graph (connected or disconnected) has exactly two odd degree, then there must be a path joining these two vertices.

Course Outcome 2 (CO2):

1. Define Hamiltonian circuit and Euler graph. Give one example for each.
2. Define directed graphs. Differentiate between symmetric digraphs and asymmetric digraphs.
3. Prove that a connected graph G is an Euler graph if all vertices of G are of even degree.
4. Prove that a graph G of n vertices always has a Hamiltonian path if the sum of the degrees of every pair of vertices $V i, V j$ in G satisfies the condition $d(V i)+d(V j)=n-1$

Course Outcome 3 (CO3):

1. Discuss the centre of a tree with suitable example.
2. Define binary tree. Then prove that number of pendant vertices in a binary tree is $\frac{(n+1)}{2}$
3. Prove that a tree with n vertices has $n-1$ edges.
4. Explain Floyd Warshall algorithm.
5. Run Dijkstra's algorithm on the following directed graph, starting at vertex \boldsymbol{S}.

Course Outcome 4 (CO4):

1. Define edge connectivity, vertex connectivity and separable graphs. Give an example for each.
2. Prove that a connected graph with \boldsymbol{n} vertices and e edges has $e-n+2$ edges.
3. Prove the statement: Every cut set in a connected graph G must also contain at least one branch of every spanning tree of G.
4. Draw the geometrical dual (\boldsymbol{G}^{*}) of the graph given below, also check whether \boldsymbol{G} and \mathbf{G}^{*} are self-duals or not, substantiate your answer clearly.

Course Outcome 5 (CO5):

1. Show that if $\boldsymbol{A}(\boldsymbol{G})$ is an incidence matrix of a connected graph \boldsymbol{G} with \boldsymbol{n} vertices, then rank of $\boldsymbol{A}(\boldsymbol{G})$ is $\boldsymbol{n} \mathbf{- 1}$.
2. Show that if \boldsymbol{B} is a cycle matrix of a connected graph \boldsymbol{G} with \boldsymbol{n} vertices and \boldsymbol{m} edges, then $\operatorname{rank} \boldsymbol{B}=\boldsymbol{m}-\boldsymbol{n}+\boldsymbol{1}$.
3. Derive the relations between the reduced incidence matrix, the fundamental cycle matrix, and the fundamental cut-set matrix of a graph \boldsymbol{G}.
4. Characterize simple, self-dual graphs in terms of their cycle and cut-set matrices.

Course Outcome 6 (CO6):

1. Show that an n vertex graph is a tree iff its chromatic polynomial is $\operatorname{Pn}(\lambda)=\lambda(\lambda-1)^{n-1}$
2. Prove the statement: "A covering g of a graph is minimal if g contains no path of length three or more."
3. Find the chromatic polynomial of the graph

Model Question paper

Total Pages: 4
Reg No.: \qquad Name: \qquad
APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY
IV SEMESTER B.TECH DEGREE EXAMINATION, MONTH and YEAR

Course Code: MAT 206

Course Name: GRAPH THEORY
Max. Marks: 100
Duration: 3 Hours

PART A
 Answer all questions, each carries 3 marks.
 Mark s

1 Construct a simple graph of 12 vertices with two of them having degree 1 , three having degree 3 and the remaining seven having degree 10 .

2 What is the largest number of vertices in a graph with 35 edges, if all vertices are of degree at least 3 ?

Define a Euler graph. Give an example of Eulerian graph which is not Hamiltonian

4 Give an example of a strongly connected simple digraph without a directed Hamiltonian path.
$5 \quad$ What is the sum of the degrees of any tree of \boldsymbol{n} vertices?
6 How many spanning trees are there for the following graph

Show that in a simple connected planar graph \boldsymbol{G} having \boldsymbol{V}-vertices, \boldsymbol{E}-edges, and no triangles $\boldsymbol{E}<=3 \boldsymbol{V}-\mathbf{6}$.

Let G be the following disconnected planar graph. Draw its dual G*, and the dual of the dual (G^{*})*.

$9 \quad$ Consider the circuit matrix \boldsymbol{B} and incidence matrix \boldsymbol{A} of a simple connected graph whose columns are arranged using the same order of edges. Prove that every row of \boldsymbol{B} is orthogonal to every row of \boldsymbol{A} ?

A graph is critical if the removal of any one of its vertices (and the edges adjacent to that vertex) results in a graph with a lower chromatic number.

Show that $\boldsymbol{K}_{\boldsymbol{n}}$ is critical for all $\boldsymbol{n}>\boldsymbol{1}$.

PART B

Answer any one Question from each module. Each question carries 14 Marks
11 a) Prove that for any simple graph with at least two vertices has two vertices of the same degree.
b) Prove that in a complete graph with \boldsymbol{n} vertices there are ($\mathbf{n} \mathbf{- 1} \mathbf{1} / \mathbf{2}$ edge disjoint Hamiltonian circuits and $\boldsymbol{n}>=\mathbf{3}$

12 a) Determine whether the following graphs $\boldsymbol{G}_{\boldsymbol{I}}=\left(\boldsymbol{V}_{1}, \boldsymbol{E}_{1}\right)$ and $\boldsymbol{G}_{2}=\left(\boldsymbol{V}_{2}, \boldsymbol{E}_{2}\right)$ are isomorphic or not. Give justification.

b) Prove that a simple graph with \boldsymbol{n} vertices and \boldsymbol{k} components can have at most ($\boldsymbol{n}-\boldsymbol{k}$) ($\boldsymbol{n}-\boldsymbol{k}+\mathbf{1}$)/ $\mathbf{2}$ edges

13 a) Let \boldsymbol{S} be a set of 5 elements. Construct a graph \boldsymbol{G} whose vertices are subsets of \boldsymbol{S} of size 2 and two such subsets are adjacent in \boldsymbol{G} if they are disjoint.
i. Draw the graph \boldsymbol{G}.
ii. How many edges must be added to \boldsymbol{G} in order for \boldsymbol{G} to have a Hamiltonian cycle?
b) Let \boldsymbol{G} be a graph with exactly two connected components, both being Eulerian. What is the minimum number of edges that need to be added to \boldsymbol{G} to obtain an Eulerian graph?

OR

14 a) Show that a \boldsymbol{k}-connected graph with no hamiltonian cycle has an independent set of size $\boldsymbol{k}+1$.
b) i. Let \boldsymbol{G} be a graph that has exactly two connected components, both being Hamiltonian graphs. Find the minimum number of edges that one needs to add to \boldsymbol{G} to obtain a Hamiltonian graph.
ii. For which values of \boldsymbol{n} the graph $\boldsymbol{Q}_{\boldsymbol{n}}$ (hyper-cube on \boldsymbol{n} vertices) is Eulerian.

15 a) A tree \boldsymbol{T} has at least one vertex \boldsymbol{v} of degree 4, and at least one vertex \boldsymbol{w} of degree 3. Prove that \boldsymbol{T} has at least 5 leaves.
b) Write Dijkstra's shortest path algorithm.

Consider the following weighted directed graph \boldsymbol{G}.

Find the shortest path between \boldsymbol{a} and every other vertices in \boldsymbol{G} using Dijkstra's shortest path algorithm.

OR
16 a) Define pendent vertices in a binary tree? Prove that the number of pendent vertices in a binary tree with \boldsymbol{n} vertices is $(\boldsymbol{n}+\boldsymbol{1}) / \mathbf{2}$.
b)

Write Prim's algorithm for finding minimum spanning tree.
Find a minimum spanning tree in the following weighted graph, using Prim's algorithm.

Determine the number of minimum spanning trees for the given graph.

17 a) i. State and prove Euler's Theorem relating the number of faces, edges and vertices for a planar graph.
ii. If \boldsymbol{G} is a 5-regular simple graph and $|\boldsymbol{V}|=\mathbf{1 0}$, prove that \boldsymbol{G} is non-planar.
b) Let \boldsymbol{G} be a connected graph and \boldsymbol{e} an edge of \boldsymbol{G}. Show that \boldsymbol{e} is a cut-edge if and only if \boldsymbol{e} belongs to every spanning tree.

OR

18 a) State Kuratowski's theorem, and use it to show that the graph G below is not planar. Draw G on the plane without edges crossing. Your drawing should use the labelling of the vertices given.

b) Let \boldsymbol{G} be a connected graph and \boldsymbol{e} an edge of \boldsymbol{G}. Show that \boldsymbol{e} belongs to a loop if and only if \boldsymbol{e} belongs to no spanning tree.

19 a) Define the circuit matrix $\boldsymbol{B}(\boldsymbol{G})$ of a connected graph \boldsymbol{G} with \boldsymbol{n} vertices and \boldsymbol{e} edges with an example. Prove that the rank of $\boldsymbol{B}(\boldsymbol{G})$ is $\boldsymbol{e}-\boldsymbol{n}+\boldsymbol{1}$
b) Give the definition of the chromatic polynomial $\boldsymbol{P}_{\boldsymbol{G}}(\boldsymbol{k})$. Directly from the definition, prove that the chromatic polynomials of $\boldsymbol{W}_{\boldsymbol{n}}$ and $\boldsymbol{C}_{\boldsymbol{n}}$ satisfy the identity $\boldsymbol{P}_{W n}(\boldsymbol{k})=\boldsymbol{k} \boldsymbol{P}_{C n-1}(\boldsymbol{k}-\mathbf{1})$.

OR

20 a) Define the incidence matrix of a graph \boldsymbol{G} with an example. Prove that the rank of an incidence matrix of a connected graph with \boldsymbol{n} vertices is $\boldsymbol{n} \mathbf{- 1}$.
b) i. A graph \boldsymbol{G} has chromatic polynomial $\boldsymbol{P}_{\boldsymbol{G}}(\boldsymbol{k})=\boldsymbol{k}^{4}-\mathbf{4} \boldsymbol{k}^{3}+5 \boldsymbol{k}^{2}-2 \boldsymbol{k}$. How many vertices and edges does \boldsymbol{G} have? Is \boldsymbol{G} bipartite? Justify your answers.
ii. Find a maximum matching in the graph below and use Hall's theorem to show that it is indeed maximum.

Assignments

Assignment must include applications of the above theory in Computer Science.

Teaching Plan		
No	Topic	No. of Lectures
1	Module-I (Introduction to Graphs)	(8)
1.	Introduction- Basic definition - Application of graphs - finite and infinite graphs, bipartite graphs,	1
2.	Incidence and Degree - Isolated vertex, pendent vertex and Null graph	1
3.	Paths and circuits	1
4.	Isomorphism	1
5.	Sub graphs, walks	1
6.	Paths and circuits	1
7.	Connected graphs.	1
8.	Disconnected graphs and components	1
2	Module-II (Eulerian and Hamiltonian graphs)	(8)
1.	Euler graphs	1
2.	Operations on graphs	1
3.	Hamiltonian paths and circuits	1
4.	Hamiltonian paths circuits	1
5.	Travelling salesman problem	1
6.	Directed graphs - types of digraphs,	1
7.	Digraphs and binary relation, Directed paths	1
8.	Fleury's algorithm	1
3	Module-III (Trees and Graph Algorithms)	(11)
1.	Trees - properties	1
2.	Trees - properties	1
3.	Trees - properties, pendent vertex	1
4.	Distance and centres in a tree	1

5.	Rooted and binary tree	1
6.	Counting trees	1
7.	Spanning trees, Fundamental circuits	1
8.	Prim's algorithm	1
9.	Kruskal's algorithm	1
10.	Dijkstra's shortest path algorithm	1
11.	Floyd-Warshall shortest path algorithm	1
4	Module-IV (Connectivity and Planar Graphs)	(9)
1.	Vertex Connectivity, Edge Connectivity	1
2.	Cut set and Cut Vertices	1
3.	Fundamental circuits	1
4.	Fundamental circuits	1
5.	Planar graphs	1
6.	Kuratowski's theorem	1
7.	Different representations of planar graphs	1
8.	Euler's theorem	1
9.	Geometric dual	1
5	Module-V (Graph Representations and Vertex Colouring)	(9)
1.	Matrix representation of graphs- Adjacency matrix, Incidence Matrix	1
2.	Circuit Matrix, Path Matrix	1
3.	Colouring- chromatic number,	1
4.	Chromatic polynomial	1
5.	Matching	1
6.	Covering	1
7.	Four colour problem and five colour problem	1

8.	Four colour problem and five colour problem	1
9.	Greedy colouring algorithm.	1

MATHEMATICS - (4 ${ }^{\text {th }}$ semester)

(For Information Technology)

CODE	COURSE NAME	CATEGORY	L	T	P	CREDIT
MAT 208	PROBABILITY,STATISTICS AND					
	ADVANCED GRAPH THEORY	BASIC SCIENCE	3	1	0	4

Preamble: This course introduces students to the modern theory of probability and statistics, covering important models of random variables and techniques of parameter estimation and hypothesis testing. This course introduce fundamental concepts in Graph Theory, including properties and characterisation of Graph/Trees and Graph theoretic algorithms, which are widely used in Mathematical modelling and has got applications across Information Technology

Prerequisite: A basic course in one-variable and multi-variable calculus, knowledge of elementary set theory, matrices

Course Outcomes: After the completion of the course the student will be able to

CO 1	Understand the concept, properties and important models of discrete random variables and, using them, analyse suitable random phenomena.
CO 2	Understand the concept, properties and important models of continuous random variables and, using them, analyse suitable random phenomena.
CO 3	Perform statistical inferences concerning characteristics of a population based on attributes of samples drawn from the population
CO 4	Understand the basic concept in Graph theory, Understand planar graphs and it's properties. Demonstrate the knowledge of fundamental concepts of matrix representation of graphs, Apply fundamental theorems on Eularian graphs and Hamiltonian graphs.
CO 5	Understand the basic concept in Trees,coloring of graphs. Apply coloring of graphs, Apply algorithm to find the minimum spanning tree

Mapping of course outcomes with program outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	3	2	2	2	2					2		1
CO 2	3	2	2	2	2					2		1
CO 3	3	2	2	2	2					2		1
CO 4	3	2	2	2	2					2		1
CO 5	3	2	2	2	2					2		1

Assessment Pattern

Bloom's Category	Continuous Assessment Tests(\%)		End Semester Examination(\%)
	$\mathbf{1}$	$\mathbf{2}$	
Remember	10	10	10
Understand	30	30	30
Apply	30	30	30
Analyse	20	20	20
Evaluate	10	10	10
Create			

End Semester Examination Pattern: There will be two parts; Part A and Part B. Part A contain 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which student should answer any one. Each question can have maximum 2 sub-divisions and carry 14 marks.

Course Level Assessment Questions

Course Outcome 1 (CO1):

1. Let X denote the number that shows up when an unfair die is tossed. Faces 1 to 5 of the die are equally likely, while face 6 is twice as likely as any other. Find the probability distribution, mean and variance of X.
2. An equipment consists of 5 components each of which may fail independently with probability 0.15 . If the equipment is able to function properly when at least 3 of the components are operational, what is the probability that it functions properly?
3. X is a binomial random variable $B(n, p)$ with $n=100$ and $p=0.1$. How would you approximate it by a Poisson random variable?
4. Three balls are drawn at random without replacement from a box containing 2 white, 3 red and 4 black balls. If X denotes the number of white balls drawn and Y denotes the number of red balls drawn, find the joint probability distribution of (X,Y)

Course Outcome 2 (CO2)

1. What can you say about $P(X=a)$ for any real number a when X is a (i) discrete random variable? (ii) continuous random variable?
2. A string, 1 meter long, is cut into two pieces at a random point between its ends. What is the probability that the length of one piece is at least twice the length of the other?
3. A random variable has a normal distribution with standard deviation 10. If the probability that it will take on a value less than 82.5 is 0.82 , what is the probability that it will take on a value more than 58.3?
4. X and Y are independent random variables with X following an exponential distribution with parameter μ and Y following and exponential distribution with parameter λ. Find $P(X+Y \leqslant 1)$

Course Outcome 3(CO3):

1. In a random sample of 500 people selected from the population of a city 60 were found to be left-handed. Find a 95% confidence interval for the proportion of lefthanded people in the city population.
2. What are the types of errors involved in statistical hypothesis testing? Explain the level of risks associated with each type of error.
3. A soft drink maker claims that a majority of adults prefer its leading beverage over that of its main competitor's. To test this claim 500 randomly selected people were given the two beverages in random order to taste. Among them, 270 preferred the soft drink maker's brand, 211 preferred the competitor's brand, and 19 could not make up their minds. Determine whether there is sufficient evidence, at the 5% level of significance, to support the soft drink maker's claim against the default that the population is evenly split in its preference.
4. A nutritionist is interested in whether two proposed diets, diet A and $\operatorname{diet} B$ work equally well in providing weight-loss for customers. In order to assess a difference between the two diets, she puts 50 customers on diet A and 60 other customers on diet B for two weeks. Those on the former had weight losses with an average of 11 pounds and a standard deviation of 3 pounds, while those on the latter lost an average of 8 pounds with a standard deviation of 2 pounds. Do the diets differ in terms of their weight loss?

Course Outcome 4(CO4):

1. How many edges are there in a graph with ten vertices each of degree six?
2. Prove that a simple graph with n vertices must be connected, if it has more than $\frac{(n-1)(n-2)}{2}$ edges
3. Prove that a connected graph G is an Euler graph if all vertices of G are of even degree.
4. Use Kuratowski'stheorem to determine whether $\mathrm{K}_{4,4}$ is planar.

Course Outcome 5 (CO5):

1. Prove that a tree with n vertices has $n-1$ edges.
2. Find the chromatic number of $\mathrm{K}_{\mathrm{m}, \mathrm{n}}$
3. Using graph model, how can the final exam at a university be scheduled so that no student has two exams at the same time?
4. Explain Prim's algorithm and use it to find the minimum spanning tree for the graph given below

Syllabus

Module 1 (Discrete probability distributions)
9 hours
(Text-1: Relevant topics from sections-3.1-3.4, 3.6, 5.1)
Discrete random variables and their probability distributions, Expectation, mean and variance, Binomial distribution, Poisson distribution, Poisson approximation to the binomial distribution, Discrete bivariate distributions, marginal distributions, Independent random variables, Expectation -multiple random variables.

Module 2 (Continuous probability distributions)
9 hours
(Text-1: Relevant topics from sections-4.1-4.4, 3.6, 5.1)
Continuous random variables and their probability distributions, Expectation, mean and variance, Uniform, exponential and normal distributions, Continuous bivariate distributions, marginal distributions, Independent random variables, Expectation-multiple random variables, i.i.d random variables and Central limit theorem (without proof).

Module 3 (Statistical inference)
9 hours

(Text-1:Relevant topics from sections-5.4, 3.6, 5.1, 7.2, 8.1, 8.3, 9.1-9.2,9.4)

Population and samples, Sampling distribution of the mean and proportion (for large samples only), Confidence interval for single mean and single proportions (for large samples only). Test of hypotheses: Large sample test for single mean and single proportion, equality of means and equality of proportions of two populations, small sample t-tests for single mean of normal population, equality of means (only pooled t-test, for independent samples from two normal populations with equal variance)

Module 4 (Advanced Graph theory -I)
9 hours
(Text-2: Relevant topics of sections $\mathbf{- 1 0 . 1}, 10.2,10.3,10.4,10.5,10.7$)
Introduction- Basic definitions, Directed graphs, pseudo graph, multigraph, Graph models, Graph terminology-vertex degree, simple graph, Complete graphs, cycles, bipartite graph,
new graphs from old-union, complement, Representing graph-Adjacency matrix, Incidence Matrix , Isomorphism, Connectivity, path, cut vertices, cut edges ,connectedness in directed and undirected graphs, Counting paths between vertices-Euler paths and circuits, Fleury's algorithm(proof of algorithm omitted), Hamiltonian paths and circuits. Ore's theorem, Planar graph, -Euler's formula on planar graphs, Kuratowski's theorem (Proof of theorem omitted)

Module 5 (Advanced Graph theory -II)
(9 hours)
(Text-2: Relevant topics of sections -(10.8,11.1, 11.4, 11.5)
Graph colouring, dual graph, chromatic number, chromatic number of completegraph K_{n}, chromatic number of complete bipartite graph $K_{m, n}$, chromatic number of cycle C_{n}, Four color theorem, applications of graph colouring-scheduling and assignments

Trees-rooted trees, Properties of trees-level, height, balanced rooted tree, Spanning tree- basic theorems on spanning tree (DFS, BFS algorithms and it's applicationsomitted), Minimum spanning tree, Prim's algorithm and Kruskal's algorithm(proofs of algorithms omitted)

(9 hours)

Text Books

1. (Text-1) Jay L. Devore, Probability and Statistics for Engineering and the Sciences, $8^{\text {th }}$ edition, Cengage, 2012
2. (Text-2) Kenneth H Rosen, Discrete Mathematics and it's applications, Tata Mc Graw Hill, $8{ }^{\text {th }}$ Edition,

Reference Books

1. Hossein Pishro-Nik, Introduction to Probability, Statistics and Random Processes, Kappa Research, 2014 (Also available online at www.probabilitycourse.com)
2. Sheldon M. Ross, Introduction to probability and statistics for engineers and scientists, $4^{\text {th }}$ edition, Elsevier, 2009.
3. T.Veera Rajan, Probability, Statistics and Random processes, Tata McGraw-Hill, 2008
4. Ralph P Grimaldi, Discrete and Combinatorial Mathematics, An applied Introduction, $4^{\text {th }}$ edition, Pearson
5. C L Liu, Elements of Discrete Mathematics, Tata McGraw Hill, $4^{\text {th }}$ edition, 2017
6. NarasinghDeo, Graph theory, PHI, 1979
7. John Clark, Derek Allan Holton, A first look at Graph Theory.

Assignments

Assignments should include specific problems highlighting the applications of the methods introduced in this course in physical sciences and engineering.

Course Contents and Lecture Schedule

No	Topic	No. of Lectures
$\mathbf{1}$	Discrete Probability distributions	$\mathbf{9}$ hours
1.1	Discrete random variables and probability distributions, expected value, mean and variance (discrete)	3
1.2	Binomial distribution-mean, variance, Poisson distribution-mean, variance, Poisson approximation to binomial	3
1.3	Discrete bivariate distributions, marginal distributions, Independence of random variables (discrete), Expected values	3
$\mathbf{2}$	Continuous Probability distributions	$\mathbf{9}$ hours
2.1	Continuous random variables and probability distributions, expected value, mean and variance (continuous)	2
2.2	Uniform, exponential and normal distributions, mean and variance of these distributions	4
2.3	Continuous bivariate distributions, marginal distributions, Independent random variables, Expected values, Central limit theorem.	3
$\mathbf{3}$	Statistical inference	$\mathbf{4}$ hours
3.1	Population and samples, Sampling distribution of single mean and single proportion(large samples)	1
3.2	Confidence interval for single mean and single proportions (large samples)	2
3.3	Hypothesis testing basics, large sample test for single mean, single proportion	2
$\mathbf{3} 4$	Large sample test for equality of means and equality of proportions of two populations	2
3.5	t-distribution and small sample t-test for single mean and pooled t- test for equality of means	2
4.1	Advanced Graph Theory -I	$\mathbf{9}$ hours

	and Degree - Isolated vertex, pendent vertex and Null graph	
4.2	Theorems connecting vertex degree and edges, bipartite graphs.	1
4.3	Adjacency matrix, incidence matrix, Isomorphism	1
4.4	Path, cut set, cut edges, Connectedness of directed and undirected graphs,path isomorphism	2
4.5	Euler paths and circuits, Fleury's algorithm(proof of algorithm omitted), Hamiltonian paths and circuits. Ore's theorem(proof omitted)	3
4.6	Planar graph, - Euler's theorem on planar graph, applications of Kuratowski's theorem	1
$\mathbf{5}$	Advanced Graph Theory -II	$\mathbf{9}$ hours
5.1	Graph colouring, dual graph	
5.2	Chromatic number, chromatic number of $K_{n}, K_{m, n}, C_{n}$, 5.3Four colour theorem, applications of graph colouring-scheduling and assignments,	2
5.4	Trees-spanning trees-definition and example, minimum spanning tree,	2
5.5	Prim's algorithm and Kruskal's algorithm(proofs of algorithms omitted)	2

MODEL QUESTION PAPER (2019 Scheme)

Reg. No: \qquad Total Pages: 4

Name : \qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FOURTH SEMESTER B.TECH DEGREE EXAMINATION (Month \& year) Course Code: MAT208

Course Name: PROBABILITY, STATISTICS AND ADVANCED GRAPH THEORY

(For Information Technology)

Max Marks:100Duration : 3 Hours

PART A (Answer all questions. Each question carries $\mathbf{3}$ marks)

1. Suppose X is a Poisson random variable find $P(X=1)=P(X=2)$. Find the mean and variance.
2. The diameter of a circular metallic discs produced by a machine is a random variable with mean 6 cm and variance 2 cm . Find the mean area of the discs.
3. If the cumulative distribution of a continuous random variable is given by

$$
F(x)=\left\{\begin{array}{rl}
0 & x \leq 1 \\
0.5 & 1<x<3, \\
1 & x \geq 3
\end{array}\right.
$$

$$
\operatorname{find} P(X \leq 2)(3)
$$

4. The random variable X is exponentially distributed with mean 3. Find $P(X>t+3 \mid X>$ t) where t is any positive real number.
5. The 95% confidence interval for the mean mass (in grams) of tablets produced by a machine is [0.56 0.57], as calculated from a random sample of 50 tablets. What do you understand from this statement?
6. The mean volume of liquid in bottles of lemonade should be at least 2 litres. A sample of bottles is taken in order to test whether the mean volume has fallen below 2 litres. Give a null and alternate hypothesis for this test and specify whether the test would be one-tailed or two-tailed. (3)
7. Draw the graph represented by the following adjacency matrix
$\left[\begin{array}{lll}1 & 2 & 1 \\ 2 & 0 & 0 \\ 0 & 2 & 2\end{array}\right]$
8. Give an example of a graph which has a circuit that is (i) Eularian but not Hamiltonian(ii)Hamiltonian but not Eularian (iii) neither Eularian nor Hamiltonian (3)
9. Find the value of $\chi_{2}\left(K_{3}\right)$
(3)
10. How many non isomorphic spanning tree does K_{3} have ?. Justify your answer (3)

PART B (Answer one question from each module)

MODULE 1

11. (a) Verify that $p(x)=\left(\frac{8}{7}\right)\left(\frac{1}{2}\right)^{x}, x=1,2,3$ is a probability distribution. Find (i) $P(X \leq$ 2) (ii) $E[X]$ and (iii) $\operatorname{var}(X)$.
(b) Find the mean and variance of a binomial random variable

OR

12. (a) Accidents occur at an intersection at a Poisson rate of 2 per day. What is the probability that there would be no accidents on a given day? What is the probability that in January there are at least 3 days (not necessarily consecutive) without any accidents?
(7)
(b) Two fair dice are rolled. Let X denote the number on the first die and $\mathrm{Y}=0$ or 1 , according as the first die shows an even number or odd number. Find (i) the joint probability distribution of X and Y , (ii) the marginal distributions. (iii) Are X and Y independent?

MODULE 2

13. (a) The IQ of an individual randomly selected from a population is a normal distribution with mean 100 and standard deviation 15 . Find the probability that an individual has IQ (i) above 140 (ii) between 120 and 130 .
(b) A continuous random variable X is uniformly distributed with mean 1 and variance $4 / 3$. Find $\mathrm{P}(\mathrm{X}<0)$

OR

14. (a) Determine the value of c so that $f(x, y)=c x y$ for $0<x<3,0<y<3$ and $f(x, y)=0$ otherwise satisfies the properties of a joint density function of random variables X and Y . Also find $P(X+Y \leq 1)$. Are X and Y independent? Justify your answer
(b) The lifetime of a certain type of electric bulb may be considered as an exponential random variable with mean 50 hours. Using central limit theorem, find the approximate probability that 100 of these electric bulbs will provide a total of more than 6000 hours of burning time.

MODULE 3

15. (a) The mean blood pressure of 100 randomly selected persons from a target population is 127.3units. Find a 95% confidence interval for the mean blood pressure of the population.
(b) The CEO of a large electric utility claims that 80 percent of his $1,000,000$ customers are very satisfied with the service they receive. To test this claim, the local newspaper surveyed 100 customers, using simple random sampling. Among the sampled customers, 73 percent say they are very satisfied. Based on these findings, do you think that the CEO is making a false claim of high satisfaction levels among his customers? Use a 0.05 level of significance.

OR

16. (a) A magazine reported the results of a telephone poll of 800 adult citizens of a country. The question posed was: "Should the tax on cigarettes be raised to pay for health care reform?" The results of the survey were: Out of the 800 persons surveyed, 605 were nonsmokers out of which 351 answered "yes" and the rest "no". Out of the remaining 195, who were smokers, 41 answered "yes" and the remaining "no". Is there sufficient evidence, at the 0.05 significance level, to conclude that the two populations smokers and non-smokers differ significantly with respect to their opinions?
(b) Two types of cars are compared for acceleration rate. 40 test runs are recorded for each car and the results for the mean elapsed time recorded below:

	Sample mean	Sample Standard Deviation
Car A	7.4	1.5
Car B	7.1	1.8

Determine if there is a difference in the mean elapsed times of the two car models at 95% confidence level.

MODULE 4

17. (a) Prove that an undirected graph has an even number of odd degree vertices
(b)Show that a bipartite graph with an odd number of vertices does not have a Hamilton circuit (7)

OR

18. (a) Show that an edge in a simple graph is a cut edge if and only if this edge is not part of any simple circuit in the graph.
(b) Use Fleury's algorithm to find an Euler circuit in the following graph

MODULE 5
19. (a) Prove that a simple graph is a tree if and only if it is connected, but the deletion of any of it's edges produces a graph that is not connected (7)(b) Find the minimal spanning tree for the following graph by Prim's algorithm

OR

20. (a)Show that a connected bipartite graph has a chromatic number of 2 .
(b) Prove that a full m -ary tree with l leaves has $n=\frac{m l-1}{m-1}$ vertices and $i=\frac{l-1}{m-1}$ internal vertices

MAT 212	INTRODUCTION TO	CATEGORY	L	T	P	CREDIT
	STOCHASTIC MODELS	BASIC SCIENCE COURSE	3	1	0	4

Preamble: This course introduces students to the modern theory of probability and its applications to modelling and analysis of stochastic systems, covering important models of random variables stochastic processes. These stochastic models have important applications in engineering and are indispensible tools in reliability theory, queueing theory and decision analysis.

Prerequisite: A basic course in one-variable and multi-variable calculus.
Course Outcomes: After the completion of the course the student will be able to

CO 1	Develop techniques to compute probabilities of discrete distributions and selectively apply them to solve real world problems
CO 2	Develop techniques to compute probabilities of continuous distributions and selectively apply them to solve real world problems
CO 3	Analyse joint distributions, correlations and collective behaviour of multiple random variables.
CO 4	Explore stochastic phenomena using appropriate tools and models like Poisson processes
CO 5	Develop Markov chain models of selected real world phenomena and analyse them using appropriate tools

Mapping of course outcomes with program outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	3	2	2	2	2					2		1
CO 2	3	2	2	2	2					2		1
CO 3	3	2	2	2	2					2		1
CO 4	3	2	2	2	2					2		1
CO 5	3	2	2	2	2					2		1

Assessment Pattern

Bloom's Category	Continuous Assessment Tests (\%)		End Semester Examination (\%)
	$\mathbf{1}$	$\mathbf{2}$	
Remember	10	10	10
Understand	35	35	35
Apply	35	35	35
Analyse	10	10	10
Evaluate	10	10	10
Create			

Mark distribution

Total Marks	CIE	ESE	ESE Duration
150	50	100	3 hours

Continuous Internal Evaluation Pattern:

Attendance

Continuous Assessment Test (2 numbers)
Assignment/Quiz/Course project
: 10 marks
: 25 marks
: 15 marks

End Semester Examination Pattern: There will be two parts; Part A and Part B. Part A contain 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which student should answer any one. Each question can have maximum 2 sub-divisions and carry 14 marks.

Course Level Assessment Questions

Course Outcome 1 (CO1):

1. Let X denote the number that shows up when an unfair die is tossed. Faces 1 to 5 of the die are equally likely, while face 6 is twice as likely as any other. Find the probability distribution, mean and variance of X .
2. An equipment consists of 5 componets each of which may fail independently with probability 0.15 . If the equipment is able to function properly when at least 3 of the componets are operational, what is the probability that it functions properly \sim ?
3. X is a binomial random variable $B(n, p)$ with $n=100$ and $p=0.1$. How would you approximate it by a Poisson random variable?
4. Fit a Poisson distribution to the following data which gives the number of days (f) on which x number of accidents have occured in an accident-prone highway for a stretch of 500 days. Fit a Poisson distribution to the data and calculate the theoretical frequencies.

x	0	1	2	3	4	5	6	7	8
f	56	156	132	92	37	22	4	0	1

Course Outcome 2 (CO2)

1. What can you say about Insert Formula $\mathrm{P}(\mathrm{X}=\mathrm{a}) P(X=a)$ for any real number a when X is a (i) discrete random variable? (ii) continuous random variable?
2. A string, 1 meter long, is cut into two pieces at a random point between its ends. What is the probability that the length of one piece is at least twise the length of the other?
3. A random variable has a normal distribution with standard deviation 10 . If the probability that it will take on a value less than 82.5 is 0.82 , what is the probability that it will take on a value more than 58.3 ?
4. State and prove the memoryless property of exponential random variable.

Course Outcome 3(CO3):

1. Three balls are drawn at random without replacement from a box containing 2 white, 3 red and 4 black balls. If X denotes the number of white balls drawn and Y denotes the number of red balls drawn, find the joint probability distribution of (X, Y)
2. X and Y are independent random variables with X following an exponential distribution with parameter μ and Y following and exponential distribution with parameter λ. Find $P(X+Y \leqslant 1)$
3. Random variables X and Y are independent with X uniformly distributed in $(-2,2)$ and Y uniformly distributed in $(-1,1)$. If $U=X+Y$ and $V=X-Y$ find $\operatorname{cov}(X, Y)$.
4. A communication channel is designed to transmit a sequence of signals. But due to noise in the transmission system each signal has a probability 0.02 of being received in error. If 1000 signals are transmitted, find using Central Limit Theorem the probability that at aleast 800 of them are received without error.

Course Outcome 4(CO4):

1. A random experiment consists of observing a busy traffic intersection continuously for one hour and counting the number of cars crossing the intesection from the start of the hour upto the current time. Classify this process and plot a possible sample function (realisation) of this process.
2. A random process $X(t)$ is defined by $\operatorname{acos}(\omega t+\Theta)$ where a and ω are constants and Θ is uniformly distributed in $[0,2 \pi]$. Show that $X(t)$ is WSS
3. Find the mean, variance and total power of the WSS random process $X(t)$, given the autocorrelation function $R_{X}(\tau)=9 e^{-|\tau|}$
4. A conversation in a wireless ad-hoc network is severely disturbed by interference signals according to a Poisson process of rate $\lambda=0.01$ per minute. (a) What is the
probability that no interference signals occur within the first two minutes of the conversation? (b) Given that the first two minutes are free of disturbing effects, what is the probability that in the next minute precisely 1 interfering signal disturbs the conversation? (c)Given that there was only 1 interfering signal in the first 3 minutes, what is the probabilty that there would be utmost 2 disturbances in the first 4 minutes?

Course Outcome 5 (CO5):

1. Consider the experiment of sending a sequence of messages across a communication channel. Due to noise, there is a small probability p that the message may be received in error. Let X_{n} denote the number of messages received correctly upto and including the $n-$ thtransmission. Show that X_{n} is a homogeneous Markov chain. What are the transition probabilities~?
2. A survey conducted among consumers of two brands (A and B) of toothpastes revealed the following data; given that a person last purchased brand A , there is a 90% chance that her next purchase will be again brand A and given that a person last purchased brand B , there is an 80% chance that her next purchase will be again brand B. (i) If a person is currently a brand B purchaser, what is the probability that she will purchase brand A two purchases from now? (ii) What fraction of the consumers survayed purchase brand A? Brand B? (iii) It is estimated that a total of 1.2 crores of tooth paste units (of brand A and B combined) are purchased every year. On selling one unit of brand A tooth paste, the company earns a profit of Rs.2. For Rs. 10 lakhs, an advertising firm guarantees to decrease from 10% to 5% the fraction of brand A customers who switch to brand B after a purchase. Should the company that makes brand A hire the advertising firm?
3. If P is the transition probability matrix of an ergodic chain, what happens to P^{n} as $n \rightarrow \infty$?
4. Give an example of transition probability matrix of a Markov chain in which all states are periodic of period 3 .

Syllabus

Module 1 (Discrete probability distributions)

Discrete random variables and their probability distributions, Expectation, mean and variance, Binomial distribution, Poisson distribution, Poisson approximation to the binomial distribution, Geometric distribution, Fitting binomial and Poisson distributions.

Module 2 (Continuous probability distributions)

Continuous random variables and their probability distributions, Expectation, mean and variance, Uniform distribution-mean variance, exponential distribution-mean, variance, memory less property, Normal distribution-mean, variance, use of normal tables.

Module 3 (Joint distributions)

Joint distributions- discrete and continuous, marginal distributions, expectations involving multiple random variables, independence, correlations and covariance involving pairs of random variables, central limit theorem.

Module 4 (Stochastic processes)

Stochastic processes-definition and classification, mean, autocorrelation, cross correlations, wide sense stationary processes, Poisson process-distribution of inter-arrival times, splitting and merging properties.

Module 5 (Markov chains)

Discrete time Markov chain, transition probability matrix, Chapman-Kolmogorov theorem (without proof), Computation of transient probabilities, classification of states of finite-state chains,-irreducible and ergodic chains, steady-state probability distribution,

Text Books

1. SaeedGhahramani, Fundamentals of probability with stochastic processes, Pearson Education, Third edition, 2012
2. HosseinPishro-Nik, "Introduction to Probability, Statistics and Random Processes", Kappa Research, 2014 (Also available online at www.probabilitycourse.com)

Reference Books

1. Sheldon M Ross, "Introduction to probability models", Elsavier.
2. Geoffrey R. Grimmett and David R. Stirzaker, "Probability and random processes", Oxford University Press
3. Oliver C. Ibe, "Fundamentals of Applied Probability and Random Processes", Elsevier, 2005.
4. Sundarapandian, "Probability, Statistics and Queuing Theory", Prentice-Hall Of India.

Assignments

Assignments should include specific problems highlighting the applications of the methods introduced in this course in physical sciences and engineering.

Course Contents and Lecture Schedule

No	Topic	No. of Lectures
$\mathbf{1}$	Discrete Probability distributions	
1.1	Discrete random variables and probability distributions, expected value, mean and variance (discrete)	3
1.2	Binomial distribution-mean, variance, Poisson distribution-mean, variance, Poisson approximation to binomial	3
1.3	Geometricdistribution, distribution fitting	3
$\mathbf{2}$	Continuous Probability distributions	3
2.1	Continuous random variables and probability distributions, expected value, mean and variance (continuous)	4
2.2	Uniform distribution, exponential distribution, and normal distributions, mean and variance of these distributions, other properties	2
2.3	Normal distribution-mean, variance, use of normal tables	2
$\mathbf{3}$	Joint distributions	2
3.1	Discrete joint distributions, computation of probability, marginal distributions	2
3.2	Continuous joint distributions, computation of probability, marginal distributions	2
3.3	Independence of random variables, expectation involving more than one random variable	2
3.4	correlations and covariance involving pairs of random variables, central limit theorem	3
$\mathbf{4}$	Stochastic processes	2
4.1	Stochastic processes-definition and classification, mean, autocorrelation, cross correlations	3
4.2	wide sense stationary processes, properties	2
4.3	Poisson process, distribution of inter-arrival times	

4.3	Splitting and merging of Poisson processes	2
$\mathbf{5}$	Discrete time Markov chains	3
5.1	Discrete time Markov chain, transition probability matrix, Chapman-Kolmogorov theorem	2
5.2	Computation of transient probabilities	2
5.3	classification of states of finite-state chains,-irreducible and ergodic chains	2
5.4	Steady state probability distribution of ergodic chains	2

Total Pages: 3

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY
 MODEL QUESTION PAPER

FOURTH SEMESTER B.TECH DEGREE EXAMINATION
 (Industrial Engineering)
 INTRODUCTION TO STOCHASTIC MODELS

Max Marks :100 Duration : 3 Hours

PART A

(Answer all questions. Each question carries $\mathbf{3}$ marks)

1. Suppose X is binomial random variable with parameters $n=100$ and $p=0.02$. Find $P(X<3)$ using Poisson approximation to X.
2. The diameter of circular metallic discs produced by a machine is a random variable with mean 6 cm and variance 2 cm . Find the mean area of the discs.
3. Find the mean and variance of the continuous random variable X with probability density function
$f(x)= \begin{cases}2 x-4, & 2 \leq x \leq 3 \\ 0 & \text { otherwise }\end{cases}$
4. The random variable X is exponentially distributed with mean 3. Find $P(X>t+3 \mid X>t)$ where t is any positive real number.
5. Let X denote the height (in inches) and Y denote the weight (in pounds) of a randomly chosen indivdual. If the units of X and Y are changed to centimeters and kilograms respectively, how would it affect $\operatorname{cov}(X, Y)$ and the correlation coefficient $\rho(X, Y)$?
6. State giving reasons whether the relation $\operatorname{var}(X+Y)=\operatorname{var}(X)+\operatorname{var}(Y)$ is true for random variables X and Y.
7. Give an examle of a contiuous time discrete state random process, with non-constant mean function.
8. $N(t)$ is a Poisson process with $P[N(2)=0]=0.1353$. Find $P[N(4)=0]$
9. Consider the experiment of sending a sequence of messages across a communication channel. Due to noise, there is a small probability p that the message may be received in error. Let X_{n} denote the number of messages received correctly upto and including the n-th transmission. Is X_{n} a Markov chain? Justify.
10. The transition probability matrix of a Markov chain is $P=\left(\begin{array}{ll}0.3 & 0.7 \\ 0.4 & 0.6\end{array}\right)$. Find $P\left(X_{3}=2 \mid X_{1}=1\right)$.

PART B
 (Answer one question from each module)
 MODULE 1

11. (a) The probability mass function of a discrete random variable is $p(x)=k x, x=1,2,3$ where k is a positive constant. Find (i)the value of k (ii) $P(X \leq 2)$ (iii) $E[X]$ and (iv) $\operatorname{var}(1-X)$.
(b) Find the mean and variance of a binomial random variable
12. (a) Accidents occur at an intersection at a Poisson rate of 2 per day. what is the probability that there would be no accidents on a given day? What is the probability that in January there are at least 3 days (not necessarily consecutive) without any accidents?
(b) A safety engineer feels that 35% of all industrial accidents in her plant are caused by failure of employees to follow instructions. She decides to look at the accident reports (selected randomly and replaced in the pile after reading) until she finds one that shows an accident caused by failure of employees to follow instructions. On average, how many reports would the safety engineer expect to look at until she finds a report showing an accident caused by employee failure to follow instructions? What is the probability that the safety engineer will have to examine at least three reports until she finds a report showing an accident caused by employee failure to follow instructions?

MODULE 2

13. (a) Let X be a continuous random variable with density

$$
f(x)= \begin{cases}0 & x<-1 \\ x & -1 \leq x<0 \\ a e^{-b x} & x \geq 0\end{cases}
$$

and expected value 1 . Find the values of a and b. Also find $\operatorname{var}(X)$.
(b) The IQ of an individual randomly selected from a population is a normal distribution with mean 100 and standard deviation 15. Find the probability that an individual has IQ (i) above 140 (ii) between 120 and 130 .

OR

14. (a) A continuous random variable X is uniformly distributed with mean 1 and variance $4 / 3$. Find $P(X<0)$
(b) Suppose that the time between customer arrivals in a store is given by an exponential random variable X, such that the average time between arrivals is 2 minutes. Suppose you walk past the store and notice its empty. What is the probability from the time you walk past the store, the store remains empty for more than 5 minutes?

MODULE 3

15. (a) Two fair dice are rolled. Let X denote the number on the first die and $Y=0$ or 1, according as the first die shows an even number or odd number. Find (i) the joint probability distribution of X and Y, (ii) the marginal distributions. (iii) Are X and Y independent ?
(b) The joint density function of random variables X and Y is given by

$$
f(x, y)= \begin{cases}e^{-(x+y)}, & x>0, \quad y>0 \\ 0 & \text { otherwise }\end{cases}
$$

Find $P(X+Y \leq 1)$. Are X and Y independent? Justify.

OR

16. (a) Let X and Y be discrete random variables with joint probability mass function defined by

$$
f(x, y)= \begin{cases}\frac{1}{4}, & (x, y) \in\{(0,0),(1,1),(1,-1),(2,0)\} \\ 0 & \text { otherwise }\end{cases}
$$

Find $\operatorname{cov}(X, Y)$ and interpret the result. Are X and Y independent ?
(b) The lifetime of a certain type of electric bulb may be considered as an exponential random variable with mean 50 hours. Using central limit theorem, find the approximate probability that 100 of these electric bulbs will provide a total of more than 6000 hours of burning time.

MODULE 4

17. (a) A stochastic process is defined by $S_{n}=S_{n-1}+X_{n}(n=1,2, \ldots)$ where $S_{0}=0$ and X_{i} are independent random variables each taking values ± 1 with equall probability. Write any two possible realisations of this process. Also find the ensemble mean of the process.
(b) A stochastic process $X(t)$ is defined by $X(t)=A \cos (\omega t)+B \sin (\omega t)$ where A and B are independent random variables with zero mean and equal variance. Show that $X(t)$ is stationary in the wide sense.

OR

18. An insurance company models the arrival of insurance claims as a Poisson process with rate 60 per year.
(a) What is the probability that there are more than 3 claims in a one-month period? What is the expected number and variance of the number of claims in a one-month period?
(b) The company estimates that the probability that an insurance claim is of more than Rs. 10 lakh is 0.2 . What is the probability that there are more than 3 claims with claim amount more than Rs. 10 lakh during a 4 -year period?(Assume that the claim amounts are independent).

MODULE 5

19. A survey conducted among consumers of two brands (A and B) of toothpastes reveal the following data; given that a person last purchased brand A, there is a 90% chance that her next purchase will be again brand A and given that a person last purchased brand B, there is an 80% chance that her next purchase will be again brand B,
(a) What percent of the consumers surveyed purchase brand A? brand B?
(b) It is estimated that a total of 1.2 crores of tooth paste units (of brand A and B combined) are purchased every year. On selling one unit of brand A tooth paste, the company earns a profit of Rs. 2. For Rs. 10 lakhs, an advertising firm guarantees to decrease from 10% to 5% the fraction of brand A customers who switch to brand B after a purchase. Should the company that makes brand A hire the advertising firm?

OR

20. (a) State the memoryless property of a Markov chain. Give one example each of a random process which is (i) a Markov chain (ii) not a Markov chain. In each case justify your claim mathematically.
(b) The transition probability matrix of a discrete time Markov chain is

$$
P=\left[\begin{array}{rrr}
0 & 1 & 0 \\
0.2 & 0 & 0.8 \\
0 & 1 & 0
\end{array}\right]
$$

Classify the states as (i) periodic or aperiodic (ii) transient or recurrent. Also check whether the Markov chain is ergodic.

SEMESTER -3

CODE	SUSTAINABLE ENGINEERING	CATEGORY	L	T	P	CREDIT
MCN201		2	0	0	NIL	

Preamble: Objective of this course is to inculcate in students an awareness of environmental issues and the global initiatives towards attaining sustainability. The student should realize the potential of technology in bringing in sustainable practices.

Prerequisite: NIL
Course Outcomes: After the completion of the course the student will be able to

CO 1	Understand the relevance and the concept of sustainability and the global initiatives in this direction
CO 2	Explain the different types of environmental pollution problems and their sustainable solutions
CO 3	Discuss the environmental regulations and standards
CO 4	Outline the concepts related to conventional and non-conventional energy
CO 5	Demonstrate the broad perspective of sustainable practices by utilizing engineering knowledge and principles

Mapping of course outcomes with program outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO $\mathbf{1 1}$	PO $\mathbf{1 2}$
CO 1						2	3					2
CO 2						2	3					2
CO 3						2	3					2
CO 4						2	3					2
CO 5						2	3					2

Assessment Pattern

Mark distribution

Bloom's Category	Continuous Assessment Tests		End Semester Examination
	$\mathbf{1}$	$\mathbf{2}$	
Remember	20	20	40
Understand	20	20	40
Apply	10	10	20
Analyse			
Evaluate			
Create			

Continuous Internal Evaluation Pattern:

$\begin{array}{ll}\text { Attendance } & : 10 \text { marks } \\ \text { Continuous Assessment Test (2 numbers) } & : 25 \text { marks } \\ \text { Assignment/Quiz/Course project } & : 15 \text { marks }\end{array}$

End Semester Examination Pattern: There will be two parts; Part A and Part B. Part A contain 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which student should answer any one. Each question can have maximum 2 sub-divisions and carry 14 marks.

Total Marks	CIE	ESE	ESE Duration
150	50	100	3 hours

Course Level Assessment Questions

Course Outcome 1 (CO1): Understand the relevance and the concept of sustainability and the global initiatives in this direction

1. Explain with an example a technology that has contributed positively to sustainable development.
2. Write a note on Millennium Development Goals.

Course Outcome 2 (CO2): Explain the different types of environmental pollution problems and their sustainable solutions

1. Explain the 3 R concept in solid waste management?
2. Write a note on any one environmental pollution problem and suggest a sustainable solution.
3. In the absence of green house effect the surface temperature of earth would not have been suitable for survival of life on earth. Comment on this statement.

Course Outcome 3(CO3): Discuss the environmental regulations and standards

1. Illustrate Life Cycle Analysis with an example of your choice.
2. "Nature is the most successful designer and the most brilliant engineer that has ever evolved". Discuss.

Course Outcome 4 (CO4): Outline the concepts related to conventional and non-conventional energy

1. Suggest a sustainable system to generate hot water in a residential building in tropical climate.
2. Enumerate the impacts of biomass energy on the environment.

Course Outcome 5 (CO5): Demonstrate the broad perspective of sustainable practices by utilizing engineering knowledge and principles

1. Suggest suitable measures to make the conveyance facilities used by your institution sustainable.

Model Question paper

Part A

(Answer all questions. Each question carries $\mathbf{3}$ marks each)

1. Define sustainable development.
2. Write a short note on Millennium Development Goals.
3. Describe carbon credit.
4. Give an account of climate change and its effect on environment.
5. Describe biomimicry? Give two examples.
6. Explain the basic concept of Life Cycle Assessment.
7. Name three renewable energy sources.
8. Mention some of the disadvantages of wind energy.
9. Enlist some of the features of sustainable habitat.
10. Explain green engineering.

Part B

(Answer one question from each module. Each question carries 14 marks)

11. Discuss the evolution of the concept of sustainability. Comment on its relevance in the modern world.

OR
12. Explain Clean Development Mechanism.
13. Explain the common sources of water pollution and its harmful effects.

OR
14. Give an account of solid waste management in cities.
15. Explain the different steps involved in the conduct of Environmental Impact Assessment. OR
16. Suggest some methods to create public awareness on environmental issues.
17. Comment on the statement, "Almost all energy that man uses comes from the Sun".

OR

18. Write notes on:
a. Land degradation due to water logging.
b. Over exploitation of water.
19. Discuss the elements related to sustainable urbanisation.
OR
20. Discuss any three methods by which you can increase energy efficiency in buildings.

Syllabus

Sustainability- need and concept, technology and sustainable development-Natural resources and their pollution, Carbon credits, Zero waste concept. Life Cycle Analysis, Environmental Impact Assessment studies, Sustainable habitat, Green buildings, green materials, Energy, Conventional and renewable sources, Sustainable urbanization, Industrial Ecology.

Module 1

Sustainability: Introduction, concept, evolution of the concept; Social, environmental and economic sustainability concepts; Sustainable development, Nexus between Technology and Sustainable development; Millennium Development Goals (MDGs) and Sustainable Development Goals (SDGs), Clean Development Mechanism (CDM).

Module 2

Environmental Pollution: Air Pollution and its effects, Water pollution and its sources, Zero waste concept and 3 R concepts in solid waste management; Greenhouse effect, Global warming, Climate change, Ozone layer depletion, Carbon credits, carbon trading and carbon foot print, legal provisions for environmental protection.

Module 3

Environmental management standards: ISO 14001:2015 frame work and benefits, Scope and goal of Life Cycle Analysis (LCA), Circular economy, Bio-mimicking, Environment Impact Assessment (EIA), Industrial ecology and industrial symbiosis.

Module 4

Resources and its utilisation: Basic concepts of Conventional and non-conventional energy, General idea about solar energy, Fuel cells, Wind energy, Small hydro plants, bio-fuels, Energy derived from oceans and Geothermal energy.

Module 5

Sustainability practices: Basic concept of sustainable habitat, Methods for increasing energy efficiency in buildings, Green Engineering, Sustainable Urbanisation, Sustainable cities, Sustainable transport.

Reference Books

1. Allen, D. T. and Shonnard, D. R., Sustainability Engineering: Concepts, Design and Case Studies, Prentice Hall.
2. Bradley. A.S; Adebayo,A.O., Maria, P. Engineering applications in sustainable design and development, Cengage learning
3. Environment Impact Assessment Guidelines, Notification of Government of India, 2006
4. Mackenthun, K.M., Basic Concepts in Environmental Management, Lewis Publication, London, 1998
5.ECBC Code 2007, Bureau of Energy Efficiency, New Delhi Bureau of Energy Efficiency Publications-Rating System, TERI Publications - GRIHA Rating System
5. Ni bin Chang, Systems Analysis for Sustainable Engineering: Theory and Applications, McGraw-Hill Professional.
6. Twidell, J. W. and Weir, A. D., Renewable Energy Resources, English Language Book Society (ELBS).
7. Purohit, S. S., Green Technology - An approach for sustainable environment, Agrobios Publication

Course Contents and Lecture Schedule

No	Topic	No. of Lectures
1	Sustainability	
1.1	Introduction, concept, evolution of the concept	1
1.2	Social, environmental and economic sustainability concepts	1
1.3	Sustainable development, Nexus between Technology and Sustainable development	1
1.4	Millennium Development Goals (MDGs) and Sustainable Development Goals (SDGs)	
1.5	Clean Development Mechanism (CDM) ._.	1 T
2	Environmental Pollution	
2.1	Air Pollution and its effects	1
2.2	Water pollution and its sources	1
2.3	Zero waste concept and 3 R concepts in solid waste management	1
2.4	Greenhouse effect, Global warming, Climate change, Ozone layer depletion	1
2.5	Carbon credits, carbon trading and carbon foot print.	1
2.6	Legal provisions for environmental protection.	1
3	Environmental management standards	
3.1	Environmental management standards	1
3.2	ISO 14001:2015 frame work and benefits	1
3.3	Scope and Goal of Life Cycle Analysis (LCA)	1
3.4	Circular economy, Bio-mimicking	1
3.5	Environment Impact Assessment (EIA)	1
3.6	Industrial Ecology, Industrial Symbiosis	1
4	Resources and its utilisation	
4.1	Basic concepts of Conventional and non-conventional energy	1
4.2	General idea about solar energy, Fuel cells	1
4.3	Wind energy, Small hydro plants, bio-fuels	1
4.4	Energy derived from oceans and Geothermal energy	1
5	Sustainability Practices ESTL,	
5.1	Basic concept of sustainable habitat	1
5.2	Methods for increasing energy efficiency of buildings	1
5.3	Green Engineering	1
5.4	Sustainable Urbanisation, Sustainable cities, Sustainable transport	1

CODE	COURSE NAME	CATEGORY	L	T	P	CREDIT
	EST $\mathbf{2 0 0}$	DESIGN AND ENGINEERING		2	0	0

Preamble:

The purpose of this course is to
i) introduce the undergraduate engineering studentsthe fundamental principles of design engineering,
ii) make them understand the steps involved in the design process and
iii) familiarize them with the basic tools used and approaches in design.

Students are expected to apply design thinking in learning as well as while practicing engineering, which is very important and relevant for today. Case studies from various practical situations will help the students realize that design is not only concerned about the function but also many other factors like customer requirements, economics, reliability, etc. along with a variety of life cycle issues.

The course will help students to consider aesthetics, ergonomics and sustainability factors in designs and also to practice professional ethics while designing.

Prerequisite:

Nil.The course will be generic to all engineering disciplines and will not require specialized preparation or prerequisites in any of the individual engineering disciplines.

Course Outcomes:

After the completion of the course the student will be able to

CO 1	Explain the different concepts and principles involved in design engineering.
CO 2	Apply design thinking while learning and practicing engineering.
CO 3	Develop innovative, reliable, sustainable and economically viable designs incorporating knowledge in engineering.

Mapping of course outcomes with program outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO $\mathbf{1 0}$	PO $\mathbf{1 1}$	PO $\mathbf{1 2}$
CO 1	2	1					1			1		
CO 2	2				1		1				2	
CO 3			2			1	1		2	2		1

Assessment Pattern

Continuous Internal Evaluation (CIE) Pattern:

Attendance

$$
\text { : } 10 \text { marks }
$$

Continuous Assessment Test (2 numbers) : 25 marks
Assignment/Quiz/Course project

End Semester Examination (ESE) Pattern: There will be two parts; Part A and Part B.
Part A
: 30 marks
part B
: 70 marks
Part A contains 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions.
Part B contains 2 case study questions from each module of which student should answer any one. Each question carry 14 marks and can have maximum 2 sub questions.

Mark distribution

Total Marks	CIE	ESE	ESE Duration
150	50	100	3 hours

Bloom's Category	Continuous Assessment Tests		End Semester Examination
	$\mathbf{1}$	$\mathbf{2}$	
Remember	5	5	20
Understand	10	10	70
Apply	35	35	-
Analyse	-	-	-
Evaluate	-	-	-
Create	-	-	

Course Level Assessment Questions

Course Outcome 1 (CO1): Appreciate the different concepts and principles involved in design engineering.

1. State how engineering design is different from other kinds of design
2. List the different stages in a design process.
3. Describedesign thinking.
4. State the function of prototyping and proofing in engineering design.
5. Write notes on the following concepts in connection with design engineering 1) Modular Design,
2) Life Cycle Design , 3) Value Engineering, 4) Concurrent Engineering, and 5) Reverse Engineering
6. State design rights.

Course Outcome 2 (CO2) Apply design thinking while learning and practicing engineering.

1. Construct the iterative process for design thinking in developing simple products like a pen, umbrella, bag, etc.
2. Show with an example how divergent-convergent thinking helps in generating alternative designs and then how to narrow down to the best design.
3. Describe how a problem-based learning helps in creating better design engineering solutions.
4. Discuss as an engineer, how ethics play a decisive role in your designs

Course Outcome 3(CO3): Develop innovative, reliable, sustainable and economically viable designs incorporating different segments of knowledge in engineering.

1. Illustratethe development of any simple product by passing through the different stages of design process
2. Show thegraphical design communication with the help of detailed 2D or 3D drawings for any simple product.
3. Describe how to develop new designs for simple products through bio-mimicry.

Model Question paper

Page 1 of 2

Reg No.: \qquad Name: \qquad
APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY THIRD/FOURTH SEMESTER B.TECH DEGREE EXAMINATION
Course Code: EST 200
Course Name: DESIGN AND ENGINEERING
Max. Marks: 100Duration: 3 Hours
PART A

Answer all questions, each question carries $\mathbf{3}$ marks Use only hand sketches
(1)Write aboutthe basic design process.
(2) Describe how to finalize the design objectives.
(3) State the role of divergent-convergent questioning in design thinking.
(4) Discuss how to perform design thinking in a team managing the conflicts.
(5) Show how engineering sketches and drawings convey designs.
(6)Explain the role of mathematics and physics in design engineering process.
(7) Distinguish between project-based learning and problem-based learning in design engineering.
(8) Describe how concepts like value engineering , concurrent engineering and reverse engineering influence engineering designs?
(9) Show how designs are varied based on the aspects of production methods, life span, reliability and environment?
(10) Explain how economics influence the engineering designs?
(10x3 marks =30 marks)

Part B

Answer any ONE question from each module. Each question carry 14 marks

Module 1

(11) Show the designing of a wrist watch going through the various stages of the design process. Use hand sketches to illustrate the processes.
or
(12)Find the customer requirements for designing a new car showroom. Show how the design objectives were finalized considering the design constraints?

Module 2

(13)Illustrate the design thinking approach for designing a bag for college students within a limited budget. Describe each stage of the process and the iterative procedure involved. Use hand sketches to support your arguments.

or

(14)Construct a number of possible designs and then refine them to narrow down to the best design for a drug trolley used in hospitals. Show how the divergent-convergent thinking helps in the process. Provide your rationale for each step by using hand sketches only.

Module 3

(15) Graphically communicate the design of a thermo flask used to keep hot coffee. Draw the detailed 2D drawings of the same with design detailing, material selection, scale drawings, dimensions, tolerances, etc. Use only hand sketches.

or

(16)Describe the role of mathematical modelling in design engineering. Show how mathematics and physics play a role in designing a lifting mechanism to raise 100 kg of weight to a floor at a height of 10 meters in a construction site.

Module 4

(17) Show the development of a nature inspired design for a solar poweredbus waiting shed beside a highway. Relate between natural and man-made designs. Use hand sketches to support your arguments.
or
(18)Show the design of a simple sofa and then depict how the design changes when considering 1) aesthetics and 2) ergonomics into consideration. Give hand sketches and explanations to justify the changes in designs.

Module 5

(19)Examine the changes in the design of a foot wear with constraints of 1) production methods, 2) life span requirement, 3) reliability issues and 4) environmental factors. Use hand sketches and give proper rationalization for the changes in design.
or
(20)Describe the how to estimate the cost of a particular design using ANY of the following: i) a website, ii) the layout of a plant, iii) the elevation of a building, iv) anelectrical or electronic system or device and v) a car.
Show how economics will influence the engineering designs. Use hand sketches to support your arguments.

Syllabus

Module 1

Design Process:- Introduction to Design and Engineering Design, Defining a Design Process-:Detailing Customer Requirements, Setting Design Objectives, Identifying Constraints, Establishing Functions, Generating Design Alternatives and Choosing a Design.

Module 2

Design Thinking Approach:-Introduction to Design Thinking, Iterative Design Thinking Process Stages: Empathize, Define, Ideate, Prototype and Test. Design Thinking as Divergent-Convergent Questioning. Design Thinking in a Team Environment.

Module 3

Design Communication (Languages of Engineering Design):-Communicating Designs Graphically, Communicating Designs Orally and in Writing. Mathematical Modeling In Design, Prototyping and Proofing the Design.

Module 4

Design Engineering Concepts:-Project-based Learning and Problem-based Learning in Design.Modular Design and Life Cycle Design Approaches. Application of Biomimicry,Aesthetics and Ergonomics in Design. Value Engineering, Concurrent Engineering, and Reverse Engineering in Design.

Module 5

Expediency, Economics and Environment in Design Engineering:-Design for Production, Use, and Sustainability. Engineering Economics in Design. Design Rights. Ethics in Design

Text Books

1) YousefHaik, SangarappillaiSivaloganathan, Tamer M. Shahin, Engineering Design Process, Cengage Learning 2003, Third Edition, ISBN-10: 9781305253285 ,
2) Voland, G., Engineering by Design, Pearson India 2014, Second Edition, ISBN 9332535051

Reference Books

1.Philip Kosky, Robert Balmer, William Keat, George Wise, Exploring Engineering, Fourth Edition: An Introduction to Engineering and Design, Academic Press 2015, 4th Edition, ISBN: 9780128012420.
2. Clive L. Dym, Engineering Design: A Project-Based Introduction, John Wiley \& Sons, New York 2009, Fourth Edition, ISBN: 978-1-118-32458-5
3. Nigel Cross, Design Thinking: Understanding How Designers Think and Work, Berg Publishers 2011, First Edition, ISBN: 978-1847886361
4. Pahl, G., Beitz, W., Feldhusen, J., Grote, K.-H., Engineering Design: A Systematic Approach, Springer 2007, Third Edition, ISBN 978-1-84628-319-2

Course Contents and Lecture Schedule

No	Topic	No. of Lectures
1	Module 1: Design Process	
1.1	Introduction to Design and Engineering Design. What does it mean to design something? How Is engineering design different from other kinds of design? Where and when do engineers design? What are the basic vocabularyin engineering design? How to learn and do engineering design.	1
1.2	Defining a Design Process-: Detailing Customer Requirements. How to do engineering design? Illustrate the process with an example. How to identify the customer requirements of design?	1
1.3	Defining a Design Process-: Setting Design Objectives, Identifying Constraints, Establishing Functions. How to finalize the design objectives? How to identify the design constraints? How to express the functions a design in engineering terms?	1
1.4	Defining a Design Process-: Generating Design Alternatives and Choosing a Design. How to generate or create feasible design alternatives? How to identify the "best possible design"?	1
1.5	Case Studies:- Stages of Design Process. Conduct exercises for designing simple products going through the different stages of design process.	1
2	Module 2: Design Thinking Approach	
2.1	Introduction to Design Thinking How does the design thinking approach help engineers in creating innovative and efficient designs?	1
2.2	Iterative Design Thinking Process Stages: Empathize, Define, Ideate, Prototype and Test. How can the engineers arrive at better designs utilizing the iterative design thinking process (in which knowledge acquired in the later stages can be applied back to the earlier stages)?	1
2.3	Design Thinking as Divergent-Convergent Questioning. Describe how to create a number of possible designs and then how to refine and narrow down to the 'best design'.	1
2.4	Design Thinking in a Team Environment. How to perform design thinking as a team managing the conflicts?	1
2.5	Case Studies: Design Thinking Approach. Conduct exercises using the design thinking approach for	1

	designing any simple products within a limited time and budget	
3	Module 3: Design Communication (Languages of Engineering Design)	
3.1	Communicating Designs Graphically. How do engineering sketches and drawings convey designs?	1
3.2	Communicating Designs Orally and in Writing. How can a design be communicated through oral presentation or technical reports efficiently?	1
	1.4 First Series Examination	
3.3	Mathematical Modelling in Design. How do mathematics and physics become a part of the design process?	1
3.4	Prototyping and Proofing the Design. How to predict whether the design will function well or not?	1
3.5	Case Studies: Communicating Designs Graphically. Conduct exercises for design communication through detailed 2D or 3D drawings of simple products with design detailing, material selection, scale drawings, dimensions, tolerances, etc.	1
4	Module 4: Design Engineering Concepts	
4.1	Project-based Learning and Problem-based Learning in Design. How engineering students can learn design engineering through projects? How students can take up problems to learn design engineering?	1
4.2	Modular Design and Life Cycle Design Approaches. What is modular approach in design engineering? How it helps? How the life cycle design approach influences design decisions?	1
4.3	Application of Bio-mimicry, Aesthetics and Ergonomics in Design. How do aesthetics and ergonomics change engineering designs? How do the intelligence in nature inspire engineering designs? What are the common examples of bio-mimicry in engineering?	1
4.4	Value Engineering, Concurrent Engineering, and Reverse Engineering in Design. How do concepts like value engineering, concurrent engineering and reverse engineering influence engineering designs?	1
4.5	Case Studies: Bio-mimicry based Designs. Conduct exercises to develop new designs for simple	1

	products using bio-mimicry and train students to bring out new nature inspired designs.			
5	Module 5: Expediency, Economics and Environment in Design Engineering			
5.1	Design for Production, Use, and Sustainability. How designs are finalized based on the aspects of production methods, life span, reliability and environment?	1		
5.2	Engineering Economics in Design. How to estimate the cost of a particular design and how will economics influence the engineering designs?	1		
5.3	Design Rights. What are design rights and how can an engineer put it into practice?	1		
5.5	Ethics in Design. How do ethics play a decisive role in engineering design?	1		
Case Studies: Design for Production, Use, and Sustainability. Conduct exercises using simple products to show how designs change with constraints of production methods, life span requirement, reliability issues and environmental factors.	1			
Second Series Examination				1

Code.	Course Name	L	T	P	Hrs	Credit
HUT 200	Professional Ethics	2	0	0	2	2

Preamble:To enable students to create awareness on ethics and human values.

Prerequisite: Nil

Course Outcomes: After the completion of the course the student will be able to

CO 1	Understand the core values that shape the ethical behaviour of a professional.
CO 2	Adopt a good character and follow an ethical life.
CO 3	Explain the role and responsibility in technological development by keeping personal ethics and legal ethics.
CO 4	Solve moral and ethical problems through exploration and assessment by established experiments.
CO 5	Apply the knowledge of human values and social values to contemporary ethical values and global issues.

Mapping of course outcomes with program outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1	PO1	PO1
(O 1								2			1	$\mathbf{2}$
CO 2								2			2	
CO 3								3			2	
CO 4								3			2	
CO 5								3			2	

Assessment Pattern

Bloom's category	Continuous Assessment Tests		End Semester Exam
	$\mathbf{1}$	$\mathbf{2}$	
Remember	15	15	30
Understood	20	20	40
Apply	15	15	30

Mark distribution

Total Marks	CIE	ESE	ESE Duration
150	50	100	3 hours

Continuous Internal Evaluation Pattern:

Attendance : 10 marks

Continuous Assessment Tests (2 Nos) : 25 marks
Assignments/Quiz : 15 marks

End Semester Examination Pattern: There will be two parts; Part A and Part B. Part A contains 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which student should answer any one. Each question can have maximum 2 sub-divisions and carry 14 marks.

Course Level Assessment Questions

Course Outcome 1 (CO1):

1. Define integrity and point out ethical values.
2. Describe the qualities required to live a peaceful life.
3. Explain the role of engineers in modern society.

Course Outcome 2 (CO2)

1. Derive the codes of ethics.
2. Differentiate consensus and controversy.
3. Discuss in detail about character and confidence.

Course Outcome 3(CO3):

1. Explain the role of professional's ethics in technological development.
2. Distinguish between self interest and conflicts of interest.
3. Review on industrial standards and legal ethics.

Course Outcome 4 (CO4):

1. Illustrate the role of engineers as experimenters.
2. Interpret the terms safety and risk.
3. Show how the occupational crimes are resolved by keeping the rights of employees.

Course Outcome 5 (CO5):

1. Exemplify the engineers as managers.
2. Investigate the causes and effects of acid rain with a case study.
3. Explorate the need of environmental ethics in technological development.

Model Question paper

QP CODE:

PAGES: 3

Reg No: \qquad
Name : \qquad
APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY THIRD/FOURTH SEMESTER B.TECH DEGREE EXAMINATION, MONTH \& YEAR

Course Code: HUT 200

Course Name: PROFESSIONAL ETHICS
Max. Marks: 100

Duration: 3 Hours
(2019-Scheme)

PART A

(Answer all questions, each question carries $\mathbf{3}$ marks)

1. Define empathy and honesty.
2. Briefly explain about morals, values and ethics.
3. Interpret the two forms of self-respect.
4. List out the models of professional roles.
5. Indicate the advantages of using standards.
6. Point out the conditions required to define a valid consent?
7. Identify the conflicts of interests with an example?
8. Recall confidentiality.
9. Conclude the features of biometric ethics.
10. Name any three professional societies and their role relevant to engineers.

PART B

(Answer one full question from each module, each question carries 14 marks)

MODULE I

11. a) Classify the relationship between ethical values and law?
b) Compare between caring and sharing.
$(10+4=14$ marks $)$
Or
12. a) Exemplify a comprehensive review about integrity and respect for others.
b) Discuss about co-operation and commitment.

MODULE II

13.a) Explain the three main levels of moral developments, deviced by Kohlberg.
b) Differentiate moral codes and optimal codes.

$$
(10+4=14 \text { marks })
$$

Or
14. a) Extrapolate the duty ethics and right ethics.
b) Discuss in detail the three types of inquiries in engineering ethics

MODULE III

15.a) Summarize the following features of morally responsible engineers.
(i) Moral autonomy
(ii) Accountability
b)Explain the rights of employees

$$
(8+6=14 \text { marks })
$$

Or
16. a) Explain the reasons for Chernobyl mishap ?
b) Describe the methods to improve collegiality and loyalty.

$$
(8+6=14 \text { marks })
$$

MODULE IV

17.a) Execute collegiality with respect to commitment, respect and connectedness.
b) Identify conflicts of interests with an example.

Or

18. a) Explain in detail about professional rights and employee rights.
b) Exemplify engineers as managers.

MODULE V

19.a) Evaluate the technology transfer and appropriate technology.
b) Explain about computer and internet ethics.

$$
(8+6=14 \text { marks })
$$

Or
20. a) Investigate the causes and effects of acid rain with a case study.
b) Conclude the features of ecocentric and biocentric ethics.

$$
(8+6=14 \text { marks })
$$

Syllabus

Module 1 - Human Values.

Morals, values and Ethics - Integrity- Academic integrity-Work Ethics- Service Learning- Civic VirtueRespect for others- Living peacefully- Caring and Sharing- Honestly- courage-Cooperation commitment-Empathy-Self Confidence -Social Expectations.

Module 2 - Engineering Ethics \& Professionalism.

Senses of Engineering Ethics - Variety of moral issues- Types of inquiry- Moral dilemmas -Moral Autonomy Kohlberg's theory- Gilligan's theory- Consensus and Controversy-Profession and Professionalism- Models of professional roles-Theories about right action -Self interest-Customs and Religion- Uses of Ethical Theories.

Module 3- Engineering as social Experimentation.

Engineering as Experimentation - Engineers as responsible Experimenters- Codes of Ethics- PlagiarismA balanced outlook on law - Challenges case study-Bhopal gas tragedy.

Module 4- Responsibilities and Rights.

Collegiality and loyalty - Managing conflict- Respect for authority- Collective bargaining- ConfidentialityRole of confidentiality in moral integrity-Conflicts of interest- Occupational crime- Professional rightsEmployee right- IPR Discrimination.

Module 5- Global Ethical Issues.

Multinational Corporations- Environmental Ethics- Business Ethics- Computer Ethics -Role in Technological Development-Engineers as Managers- Consulting Engineers- Engineers as Expert witnesses and advisors-Moral leadership.

Text Book

1. M Govindarajan, S Natarajan and V S Senthil Kumar, Engineering Ethics, PHI Learning Private Ltd, New Delhi,2012.
2. R S Naagarazan, A text book on professional ethics and human values, New age international (P) limited ,New Delhi,2006.

Reference Books

1. Mike W Martin and Roland Schinzinger, Ethics in Engineering, $4^{\text {th }}$ edition, Tata McGraw Hill Publishing Company Pvt Ltd, New Delhi,2014.
2. Charles D Fleddermann, Engineering Ethics, Pearson Education/ Prentice Hall of India, New Jersey, 2004.
3. Charles E Harris, Michael S Protchard and Michael J Rabins, Engineering Ethics- Concepts and cases, Wadsworth Thompson Learning, United states,2005.
4. http://www.slideword.org/slidestag.aspx/human-values-and-Professional-ethics.

Course Contents and Lecture Schedule

SL.N $\mathbf{0}$	Topic	No. of Lectures $\mathbf{2 5}$
$\mathbf{1}$	Module 1 - Human Values.	1
1.1	Morals, values and Ethics, Integrity, Academic Integrity, Work Ethics	1
1.2	Service Learning, Civic Virtue, Respect for others, Living peacefully	1
1.3	Caring and Sharing, Honesty, Courage, Co-operation commitment	2
1.4	Empathy, Self Confidence, Social Expectations	1
$\mathbf{2}$	Module 2- Engineering Ethics \& Professionalism.	
2.1	Senses of Engineering Ethics, Variety of moral issues, Types of inquiry	1
2.2	Moral dilemmas, Moral Autonomy, Kohlberg's theory	1
2.3	 Professionalism, Models of professional roles, Theories about right action	2
2.4	Self interest-Customs and Religion, Uses of Ethical Theories	1
$\mathbf{3}$	Module 3- Engineering as social Experimentation.	
3.1	Engineering as Experimentation, Engineers as responsible Experimenters	1
3.2	Codes of Ethics,Plagiarism, A balanced outlook on law	2
3.3	Challenger case study, Bhopal gas tragedy	2
$\mathbf{4}$	Module 4- Responsibilities and Rights.	2
4.1	Collegiality and loyalty, Managing conflict, Respect for authority	1
4.2	Collective bargaining, Confidentiality, Role of confidentiality in moral integrity, Conflicts of interest	2
4.3	Occupational crime, Professional rights, Employee right, IPR Discrimination	2
$\mathbf{5}$	Module 5- Global Ethical Issues.	2
5.1	Multinational Corporations, Environmental Ethics, Business Ethics, Computer Ethics	2
5.2	Role in Technological Development, Moral leadership	1
5.3	Engineers as Managers, Consulting Engineers, Engineers as Expert witnesses and advisors	2

SEMESTER -4

CODE	COURSE NAME	CATEGORY	L	T	P	CREDIT
MCN202	CONSTITUTION OF INDIA		2	0	0	NIL

Preamble:

The study of their own country constitution and studying the importance environment as well as understanding their own human rights help the students to concentrate on their day to day discipline. It also gives the knowledge and strength to face the society and people.

Prerequisite: Nil
Course Outcomes: After the completion of the course the student will be able to

CO 1	Explain the background of the present constitution of India and features.
CO 2	Utilize the fundamental rights and duties.
CO 3	Understand the working of the union executive, parliament and judiciary.
CO 4	Understand the working of the state executive, legislature and judiciary.
CO 5	Utilize the special provisions and statutory institutions.
CO 6	Show national and patriotic spirit as responsible citizens of the country

Mapping of course outcomes with program outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO $\mathbf{1 0}$	PO $\mathbf{1 1}$	PO $\mathbf{1 2}$
CO 1					2	2	2		2			
CO 2					3	3	3		3			
CO 3					3	2	3		3			
CO 4					3	2	3		3			
CO 5					3	2	3		3			
CO 6						3	3	3		2		

Assessment Pattern

Bloom's Category	Continuous Assessment Tests		End Semester Examination
	$\mathbf{1}$		

Evaluate			
Create			

Mark distribution

Total Marks	CIE	ESE	ESE Duration
150	50	100	3 hours

Continuous Internal Evaluation Pattern:

Attendance	$: 10$ marks
Continuous Assessment Test (2 numbers)	$: 25$ marks
Assignment/Quiz/Course project	$: 15$ marks

End Semester Examination Pattern: There will be two parts; Part A and Part B. Part A contain 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which student should answer any one. Each question can have maximum 2 sub-divisions and carry 14 marks.
Course Level Assessment Questions
Course Outcome 1 (CO1):
1 Discuss the historical background of the Indian constitution.
2 Explain the salient features of the Indian constitution.
3 Discuss the importance of preamble in the implementation of constitution.

Course Outcome 2 (CO2)

1 What are fundamental rights ? Examine each of them.
2 Examine the scope of freedom of speech and expression underlying the constitution.
3 The thumb impression of an accused is taken by the police against his will. He contends that this is a violation of his rights under Art 20(3) of the constitution. Decide.

Course Outcome 3(CO3):

1 Explain the powers of the President to suspend the fundamental rights during emergency.

2 Explain the salient features of appeal by special leave.
3. List the constitutional powers of President.

Course Outcome 4 (CO4):

1 Discuss the constitutional powers of Governor.
2 Examine the writ jurisdiction of High court.
3 Discuss the qualification and disqualification of membership of state legislature.

Course Outcome 5 (CO5):

1 Discuss the duties and powers of comptroller of auditor general.

2 Discuss the proclamation of emergency.

3 A state levies tax on motor vehicles used in the state, for the purpose of maintaining roads in the state. X challenges the levy of the tax on the ground that it violates the freedom of interstate commerce guaranteed under Art 301. Decide.

Course Outcome 6 (CO6):

1 Explain the advantages of citizenship.
2 List the important principles contained in the directive principles of state policy.
3 Discuss the various aspects contained in the preamble of the constitution

Model Question paper

PART A

(Answer all questions. Each question carries 3 marks)

1 Define and explain the term constitution.

2 Explain the need and importance of Preamble.
3 What is directive principle of state policy?
4 Define the State.
5 List the functions of Attorney general of India.

6 Explain the review power of Supreme court.
7 List the qualifications of Governor.
8 Explain the term and removal of Judges in High court.
9 Explain the powers of public service commission.
10 List three types of emergency under Indian constitution.

(Answer on question from each module. Each question carries 14 marks)

Module 1

11 Discuss the various methods of acquiring Indian citizenship.
12 Examine the salient features of the Indian constitution.

Module 2

13 A high court passes a judgement against X . X desires to file a writ petition in the supreme court under Art32, on the ground that the judgement violates his fundamental rights.

Advise him whether he can do so.
14 What is meant by directive principles of State policy? List the directives.

Module3

15 Describe the procedure of election and removal of the President of India.
16 Supreme court may in its discretion grant special leave to appeal. Examine the situation.

Module 4

17 Discuss the powers of Governor.
18 X filed a writ petition under Art 226 which was dismissed. Subsequently, he filed a writ petition under Art 32 of the constitution, seeking the same remedy. The Government argued that the writ petition should be dismissed, on the ground of res judicata. Decide.

Module 5

19 Examine the scope of the financial relations between the union and the states.

20 Discuss the effects of proclamation of emergency.
(14X5=70marks)

Syllabus

Module 1 Definition, historical back ground, features, preamble, territory, citizenship.
Module 2 State, fundamental rights, directive principles, duties.

Module 3 The machinery of the union government.
Module 4 Government machinery in the states

Module 5 The federal system, Statutory Institutions, miscellaneous provisions.

Text Books

1 D D Basu, Introduction to the constitution of India, Lexis Nexis, New Delhi, 24e, 2019 2 PM Bhakshi, The constitution of India, Universal Law, 14e, 2017

Reference Books

1 Ministry of law and justice, The constitution of India, Govt of India, New Delhi, 2019.
2 JN Pandey, The constitutional law of India, Central Law agency, Allahabad, 51e, 2019

3 MV Pylee, India's Constitution, S Chand and company, New Delhi, 16e, 2016

Course Contents and Lecture Schedule

No	Topic	No. of Lectures
1	Module 1	
1.1	Definition of constitution, historical back ground, salient features of the constitution.	1
1.2	Preamble of the constitution, union and its territory.	1
1.3	Meaning of citizenship, types, termination of citizenship.	2
2	Module 2	
2.1	Definition of state, fundamental rights, general nature, classification, right to equality, right to freedom, right against exploitation	2

2.2	Right to freedom of religion, cultural and educational rights, right to constitutional remedies. Protection in respect of conviction for offences.	2
2.3	Directive principles of state policy, classification of directives, fundamental duties.	2
3	Module 3	
3.1	The Union executive, the President, the vice President, the council of ministers, the Prime minister, Attorney-General, functions.	2
3.2	The parliament, composition, Rajya sabha, Lok sabha, qualification and disqualification of membership, functions of parliament.	2
3.3	Union judiciary, the supreme court, jurisdiction, appeal by special leave.	1
4	Module 4	
4.1	The State executive, the Governor, the council of ministers, the Chief minister, advocate general, union Territories.	2
4.2	The State Legislature, composition, qualification and disqualification of membership, functions.	2
4.3	The state judiciary, the high court, jurisdiction, writs jurisdiction.	1
5	Module 5	
5.1	Relations between the Union and the States, legislative relation, administrative relation, financial Relations, Inter State council, finance commission.	1
5.2	Emergency provision, freedom of trade commerce and inter course, comptroller and auditor general of India, public Services, public service commission, administrative Tribunals.	2
5.3	Official language, elections, special provisions relating to certain classes, amendment of the Constitution.	2

CODE	COURSE NAME	CATEGORY	L	T	P	CREDIT
	EST $\mathbf{2 0 0}$	DESIGN AND ENGINEERING		2	0	0

Preamble:

The purpose of this course is to
i) introduce the undergraduate engineering studentsthe fundamental principles of design engineering,
ii) make them understand the steps involved in the design process and
iii) familiarize them with the basic tools used and approaches in design.

Students are expected to apply design thinking in learning as well as while practicing engineering, which is very important and relevant for today. Case studies from various practical situations will help the students realize that design is not only concerned about the function but also many other factors like customer requirements, economics, reliability, etc. along with a variety of life cycle issues.

The course will help students to consider aesthetics, ergonomics and sustainability factors in designs and also to practice professional ethics while designing.

Prerequisite:

Nil.The course will be generic to all engineering disciplines and will not require specialized preparation or prerequisites in any of the individual engineering disciplines.

Course Outcomes:

After the completion of the course the student will be able to

CO 1	Explain the different concepts and principles involved in design engineering.
CO 2	Apply design thinking while learning and practicing engineering.
CO 3	Develop innovative, reliable, sustainable and economically viable designs incorporating knowledge in engineering.

Mapping of course outcomes with program outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO $\mathbf{1 0}$	PO $\mathbf{1 1}$	PO $\mathbf{1 2}$
CO 1	2	1					1			1		
CO 2	2				1		1				2	
CO 3			2			1	1		2	2		1

Assessment Pattern

Continuous Internal Evaluation (CIE) Pattern:

Attendance

$$
\text { : } 10 \text { marks }
$$

Continuous Assessment Test (2 numbers) : 25 marks
Assignment/Quiz/Course project

End Semester Examination (ESE) Pattern: There will be two parts; Part A and Part B.
Part A
: 30 marks
part B
: 70 marks
Part A contains 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions.
Part B contains 2 case study questions from each module of which student should answer any one. Each question carry 14 marks and can have maximum 2 sub questions.

Mark distribution

Total Marks	CIE	ESE	ESE Duration
150	50	100	3 hours

Bloom's Category	Continuous Assessment Tests		End Semester Examination
	$\mathbf{1}$	$\mathbf{2}$	
Remember	5	5	20
Understand	10	10	70
Apply	35	35	-
Analyse	-	-	-
Evaluate	-	-	-
Create	-	-	

Course Level Assessment Questions

Course Outcome 1 (CO1): Appreciate the different concepts and principles involved in design engineering.

1. State how engineering design is different from other kinds of design
2. List the different stages in a design process.
3. Describedesign thinking.
4. State the function of prototyping and proofing in engineering design.
5. Write notes on the following concepts in connection with design engineering 1) Modular Design,
2) Life Cycle Design , 3) Value Engineering, 4) Concurrent Engineering, and 5) Reverse Engineering
6. State design rights.

Course Outcome 2 (CO2) Apply design thinking while learning and practicing engineering.

1. Construct the iterative process for design thinking in developing simple products like a pen, umbrella, bag, etc.
2. Show with an example how divergent-convergent thinking helps in generating alternative designs and then how to narrow down to the best design.
3. Describe how a problem-based learning helps in creating better design engineering solutions.
4. Discuss as an engineer, how ethics play a decisive role in your designs

Course Outcome 3(CO3): Develop innovative, reliable, sustainable and economically viable designs incorporating different segments of knowledge in engineering.

1. Illustratethe development of any simple product by passing through the different stages of design process
2. Show thegraphical design communication with the help of detailed 2D or 3D drawings for any simple product.
3. Describe how to develop new designs for simple products through bio-mimicry.

Model Question paper

Page 1 of 2

Reg No.: \qquad Name: \qquad
APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY THIRD/FOURTH SEMESTER B.TECH DEGREE EXAMINATION
Course Code: EST 200
Course Name: DESIGN AND ENGINEERING
Max. Marks: 100Duration: 3 Hours
PART A

Answer all questions, each question carries $\mathbf{3}$ marks Use only hand sketches
(1)Write aboutthe basic design process.
(2) Describe how to finalize the design objectives.
(3) State the role of divergent-convergent questioning in design thinking.
(4) Discuss how to perform design thinking in a team managing the conflicts.
(5) Show how engineering sketches and drawings convey designs.
(6)Explain the role of mathematics and physics in design engineering process.
(7) Distinguish between project-based learning and problem-based learning in design engineering.
(8) Describe how concepts like value engineering , concurrent engineering and reverse engineering influence engineering designs?
(9) Show how designs are varied based on the aspects of production methods, life span, reliability and environment?
(10) Explain how economics influence the engineering designs?
(10x3 marks =30 marks)

Part B

Answer any ONE question from each module. Each question carry 14 marks

Module 1

(11) Show the designing of a wrist watch going through the various stages of the design process. Use hand sketches to illustrate the processes.
or
(12)Find the customer requirements for designing a new car showroom. Show how the design objectives were finalized considering the design constraints?

Module 2

(13)Illustrate the design thinking approach for designing a bag for college students within a limited budget. Describe each stage of the process and the iterative procedure involved. Use hand sketches to support your arguments.

or

(14)Construct a number of possible designs and then refine them to narrow down to the best design for a drug trolley used in hospitals. Show how the divergent-convergent thinking helps in the process. Provide your rationale for each step by using hand sketches only.

Module 3

(15) Graphically communicate the design of a thermo flask used to keep hot coffee. Draw the detailed 2D drawings of the same with design detailing, material selection, scale drawings, dimensions, tolerances, etc. Use only hand sketches.

or

(16)Describe the role of mathematical modelling in design engineering. Show how mathematics and physics play a role in designing a lifting mechanism to raise 100 kg of weight to a floor at a height of 10 meters in a construction site.

Module 4

(17) Show the development of a nature inspired design for a solar poweredbus waiting shed beside a highway. Relate between natural and man-made designs. Use hand sketches to support your arguments.
or
(18)Show the design of a simple sofa and then depict how the design changes when considering 1) aesthetics and 2) ergonomics into consideration. Give hand sketches and explanations to justify the changes in designs.

Module 5

(19)Examine the changes in the design of a foot wear with constraints of 1) production methods, 2) life span requirement, 3) reliability issues and 4) environmental factors. Use hand sketches and give proper rationalization for the changes in design.
or
(20)Describe the how to estimate the cost of a particular design using ANY of the following: i) a website, ii) the layout of a plant, iii) the elevation of a building, iv) anelectrical or electronic system or device and v) a car.
Show how economics will influence the engineering designs. Use hand sketches to support your arguments.

Syllabus

Module 1

Design Process:- Introduction to Design and Engineering Design, Defining a Design Process-:Detailing Customer Requirements, Setting Design Objectives, Identifying Constraints, Establishing Functions, Generating Design Alternatives and Choosing a Design.

Module 2

Design Thinking Approach:-Introduction to Design Thinking, Iterative Design Thinking Process Stages: Empathize, Define, Ideate, Prototype and Test. Design Thinking as Divergent-Convergent Questioning. Design Thinking in a Team Environment.

Module 3

Design Communication (Languages of Engineering Design):-Communicating Designs Graphically, Communicating Designs Orally and in Writing. Mathematical Modeling In Design, Prototyping and Proofing the Design.

Module 4

Design Engineering Concepts:-Project-based Learning and Problem-based Learning in Design.Modular Design and Life Cycle Design Approaches. Application of Biomimicry,Aesthetics and Ergonomics in Design. Value Engineering, Concurrent Engineering, and Reverse Engineering in Design.

Module 5

Expediency, Economics and Environment in Design Engineering:-Design for Production, Use, and Sustainability. Engineering Economics in Design. Design Rights. Ethics in Design

Text Books

1) YousefHaik, SangarappillaiSivaloganathan, Tamer M. Shahin, Engineering Design Process, Cengage Learning 2003, Third Edition, ISBN-10: 9781305253285 ,
2) Voland, G., Engineering by Design, Pearson India 2014, Second Edition, ISBN 9332535051

Reference Books

1.Philip Kosky, Robert Balmer, William Keat, George Wise, Exploring Engineering, Fourth Edition: An Introduction to Engineering and Design, Academic Press 2015, 4th Edition, ISBN: 9780128012420.
2. Clive L. Dym, Engineering Design: A Project-Based Introduction, John Wiley \& Sons, New York 2009, Fourth Edition, ISBN: 978-1-118-32458-5
3. Nigel Cross, Design Thinking: Understanding How Designers Think and Work, Berg Publishers 2011, First Edition, ISBN: 978-1847886361
4. Pahl, G., Beitz, W., Feldhusen, J., Grote, K.-H., Engineering Design: A Systematic Approach, Springer 2007, Third Edition, ISBN 978-1-84628-319-2

Course Contents and Lecture Schedule

No	Topic	No. of Lectures
1	Module 1: Design Process	
1.1	Introduction to Design and Engineering Design. What does it mean to design something? How Is engineering design different from other kinds of design? Where and when do engineers design? What are the basic vocabularyin engineering design? How to learn and do engineering design.	1
1.2	Defining a Design Process-: Detailing Customer Requirements. How to do engineering design? Illustrate the process with an example. How to identify the customer requirements of design?	1
1.3	Defining a Design Process-: Setting Design Objectives, Identifying Constraints, Establishing Functions. How to finalize the design objectives? How to identify the design constraints? How to express the functions a design in engineering terms?	1
1.4	Defining a Design Process-: Generating Design Alternatives and Choosing a Design. How to generate or create feasible design alternatives? How to identify the "best possible design"?	1
1.5	Case Studies:- Stages of Design Process. Conduct exercises for designing simple products going through the different stages of design process.	1
2	Module 2: Design Thinking Approach	
2.1	Introduction to Design Thinking How does the design thinking approach help engineers in creating innovative and efficient designs?	1
2.2	Iterative Design Thinking Process Stages: Empathize, Define, Ideate, Prototype and Test. How can the engineers arrive at better designs utilizing the iterative design thinking process (in which knowledge acquired in the later stages can be applied back to the earlier stages)?	1
2.3	Design Thinking as Divergent-Convergent Questioning. Describe how to create a number of possible designs and then how to refine and narrow down to the 'best design'.	1
2.4	Design Thinking in a Team Environment. How to perform design thinking as a team managing the conflicts?	1
2.5	Case Studies: Design Thinking Approach. Conduct exercises using the design thinking approach for	1

	designing any simple products within a limited time and budget	
3	Module 3: Design Communication (Languages of Engineering Design)	
3.1	Communicating Designs Graphically. How do engineering sketches and drawings convey designs?	1
3.2	Communicating Designs Orally and in Writing. How can a design be communicated through oral presentation or technical reports efficiently?	1
	1.4 First Series Examination	
3.3	Mathematical Modelling in Design. How do mathematics and physics become a part of the design process?	1
3.4	Prototyping and Proofing the Design. How to predict whether the design will function well or not?	1
3.5	Case Studies: Communicating Designs Graphically. Conduct exercises for design communication through detailed 2D or 3D drawings of simple products with design detailing, material selection, scale drawings, dimensions, tolerances, etc.	1
4	Module 4: Design Engineering Concepts	
4.1	Project-based Learning and Problem-based Learning in Design. How engineering students can learn design engineering through projects? How students can take up problems to learn design engineering?	1
4.2	Modular Design and Life Cycle Design Approaches. What is modular approach in design engineering? How it helps? How the life cycle design approach influences design decisions?	1
4.3	Application of Bio-mimicry, Aesthetics and Ergonomics in Design. How do aesthetics and ergonomics change engineering designs? How do the intelligence in nature inspire engineering designs? What are the common examples of bio-mimicry in engineering?	1
4.4	Value Engineering, Concurrent Engineering, and Reverse Engineering in Design. How do concepts like value engineering, concurrent engineering and reverse engineering influence engineering designs?	1
4.5	Case Studies: Bio-mimicry based Designs. Conduct exercises to develop new designs for simple	1

	products using bio-mimicry and train students to bring out new nature inspired designs.			
5	Module 5: Expediency, Economics and Environment in Design Engineering			
5.1	Design for Production, Use, and Sustainability. How designs are finalized based on the aspects of production methods, life span, reliability and environment?	1		
5.2	Engineering Economics in Design. How to estimate the cost of a particular design and how will economics influence the engineering designs?	1		
5.3	Design Rights. What are design rights and how can an engineer put it into practice?	1		
5.5	Ethics in Design. How do ethics play a decisive role in engineering design?	1		
Case Studies: Design for Production, Use, and Sustainability. Conduct exercises using simple products to show how designs change with constraints of production methods, life span requirement, reliability issues and environmental factors.	1			
Second Series Examination				1

Code.	Course Name	L	T	P	Hrs	Credit
HUT 200	Professional Ethics	2	0	0	2	2

Preamble:To enable students to create awareness on ethics and human values.

Prerequisite: Nil

Course Outcomes: After the completion of the course the student will be able to

CO 1	Understand the core values that shape the ethical behaviour of a professional.
CO 2	Adopt a good character and follow an ethical life.
CO 3	Explain the role and responsibility in technological development by keeping personal ethics and legal ethics.
CO 4	Solve moral and ethical problems through exploration and assessment by established experiments.
CO 5	Apply the knowledge of human values and social values to contemporary ethical values and global issues.

Mapping of course outcomes with program outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1	PO1	PO1
(O 1								2			1	$\mathbf{2}$
CO 2								2			2	
CO 3								3			2	
CO 4								3			2	
CO 5								3			2	

Assessment Pattern

Bloom's category	Continuous Assessment Tests		End Semester Exam
	$\mathbf{1}$	$\mathbf{2}$	
Remember	15	15	30
Understood	20	20	40
Apply	15	15	30

Mark distribution

Total Marks	CIE	ESE	ESE Duration
150	50	100	3 hours

Continuous Internal Evaluation Pattern:

Attendance : 10 marks

Continuous Assessment Tests (2 Nos) : 25 marks
Assignments/Quiz : 15 marks

End Semester Examination Pattern: There will be two parts; Part A and Part B. Part A contains 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which student should answer any one. Each question can have maximum 2 sub-divisions and carry 14 marks.

Course Level Assessment Questions

Course Outcome 1 (CO1):

1. Define integrity and point out ethical values.
2. Describe the qualities required to live a peaceful life.
3. Explain the role of engineers in modern society.

Course Outcome 2 (CO2)

1. Derive the codes of ethics.
2. Differentiate consensus and controversy.
3. Discuss in detail about character and confidence.

Course Outcome 3(CO3):

1. Explain the role of professional's ethics in technological development.
2. Distinguish between self interest and conflicts of interest.
3. Review on industrial standards and legal ethics.

Course Outcome 4 (CO4):

1. Illustrate the role of engineers as experimenters.
2. Interpret the terms safety and risk.
3. Show how the occupational crimes are resolved by keeping the rights of employees.

Course Outcome 5 (CO5):

1. Exemplify the engineers as managers.
2. Investigate the causes and effects of acid rain with a case study.
3. Explorate the need of environmental ethics in technological development.

Model Question paper

QP CODE:

PAGES: 3

Reg No: \qquad
Name : \qquad
APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY THIRD/FOURTH SEMESTER B.TECH DEGREE EXAMINATION, MONTH \& YEAR

Course Code: HUT 200

Course Name: PROFESSIONAL ETHICS
Max. Marks: 100

Duration: 3 Hours
(2019-Scheme)

PART A

(Answer all questions, each question carries $\mathbf{3}$ marks)

1. Define empathy and honesty.
2. Briefly explain about morals, values and ethics.
3. Interpret the two forms of self-respect.
4. List out the models of professional roles.
5. Indicate the advantages of using standards.
6. Point out the conditions required to define a valid consent?
7. Identify the conflicts of interests with an example?
8. Recall confidentiality.
9. Conclude the features of biometric ethics.
10. Name any three professional societies and their role relevant to engineers.

PART B

(Answer one full question from each module, each question carries 14 marks)

MODULE I

11. a) Classify the relationship between ethical values and law?
b) Compare between caring and sharing.
$(10+4=14$ marks $)$
Or
12. a) Exemplify a comprehensive review about integrity and respect for others.
b) Discuss about co-operation and commitment.

MODULE II

13.a) Explain the three main levels of moral developments, deviced by Kohlberg.
b) Differentiate moral codes and optimal codes.

$$
(10+4=14 \text { marks })
$$

Or
14. a) Extrapolate the duty ethics and right ethics.
b) Discuss in detail the three types of inquiries in engineering ethics

MODULE III

15.a) Summarize the following features of morally responsible engineers.
(i) Moral autonomy
(ii) Accountability
b)Explain the rights of employees

$$
(8+6=14 \text { marks })
$$

Or
16. a) Explain the reasons for Chernobyl mishap ?
b) Describe the methods to improve collegiality and loyalty.

$$
(8+6=14 \text { marks })
$$

MODULE IV

17.a) Execute collegiality with respect to commitment, respect and connectedness.
b) Identify conflicts of interests with an example.

Or

18. a) Explain in detail about professional rights and employee rights.
b) Exemplify engineers as managers.

MODULE V

19.a) Evaluate the technology transfer and appropriate technology.
b) Explain about computer and internet ethics.

$$
(8+6=14 \text { marks })
$$

Or
20. a) Investigate the causes and effects of acid rain with a case study.
b) Conclude the features of ecocentric and biocentric ethics.

$$
(8+6=14 \text { marks })
$$

Syllabus

Module 1 - Human Values.

Morals, values and Ethics - Integrity- Academic integrity-Work Ethics- Service Learning- Civic VirtueRespect for others- Living peacefully- Caring and Sharing- Honestly- courage-Cooperation commitment-Empathy-Self Confidence -Social Expectations.

Module 2 - Engineering Ethics \& Professionalism.

Senses of Engineering Ethics - Variety of moral issues- Types of inquiry- Moral dilemmas -Moral Autonomy Kohlberg's theory- Gilligan's theory- Consensus and Controversy-Profession and Professionalism- Models of professional roles-Theories about right action -Self interest-Customs and Religion- Uses of Ethical Theories.

Module 3- Engineering as social Experimentation.

Engineering as Experimentation - Engineers as responsible Experimenters- Codes of Ethics- PlagiarismA balanced outlook on law - Challenges case study-Bhopal gas tragedy.

Module 4- Responsibilities and Rights.

Collegiality and loyalty - Managing conflict- Respect for authority- Collective bargaining- ConfidentialityRole of confidentiality in moral integrity-Conflicts of interest- Occupational crime- Professional rightsEmployee right- IPR Discrimination.

Module 5- Global Ethical Issues.

Multinational Corporations- Environmental Ethics- Business Ethics- Computer Ethics -Role in Technological Development-Engineers as Managers- Consulting Engineers- Engineers as Expert witnesses and advisors-Moral leadership.

Text Book

1. M Govindarajan, S Natarajan and V S Senthil Kumar, Engineering Ethics, PHI Learning Private Ltd, New Delhi,2012.
2. R S Naagarazan, A text book on professional ethics and human values, New age international (P) limited ,New Delhi,2006.

Reference Books

1. Mike W Martin and Roland Schinzinger, Ethics in Engineering, $4^{\text {th }}$ edition, Tata McGraw Hill Publishing Company Pvt Ltd, New Delhi,2014.
2. Charles D Fleddermann, Engineering Ethics, Pearson Education/ Prentice Hall of India, New Jersey, 2004.
3. Charles E Harris, Michael S Protchard and Michael J Rabins, Engineering Ethics- Concepts and cases, Wadsworth Thompson Learning, United states,2005.
4. http://www.slideword.org/slidestag.aspx/human-values-and-Professional-ethics.

Course Contents and Lecture Schedule

SL.N $\mathbf{0}$	Topic	No. of Lectures $\mathbf{2 5}$
$\mathbf{1}$	Module 1 - Human Values.	1
1.1	Morals, values and Ethics, Integrity, Academic Integrity, Work Ethics	1
1.2	Service Learning, Civic Virtue, Respect for others, Living peacefully	1
1.3	Caring and Sharing, Honesty, Courage, Co-operation commitment	2
1.4	Empathy, Self Confidence, Social Expectations	1
$\mathbf{2}$	Module 2- Engineering Ethics \& Professionalism.	
2.1	Senses of Engineering Ethics, Variety of moral issues, Types of inquiry	1
2.2	Moral dilemmas, Moral Autonomy, Kohlberg's theory	1
2.3	 Professionalism, Models of professional roles, Theories about right action	2
2.4	Self interest-Customs and Religion, Uses of Ethical Theories	1
$\mathbf{3}$	Module 3- Engineering as social Experimentation.	
3.1	Engineering as Experimentation, Engineers as responsible Experimenters	1
3.2	Codes of Ethics,Plagiarism, A balanced outlook on law	2
3.3	Challenger case study, Bhopal gas tragedy	2
$\mathbf{4}$	Module 4- Responsibilities and Rights.	2
4.1	Collegiality and loyalty, Managing conflict, Respect for authority	1
4.2	Collective bargaining, Confidentiality, Role of confidentiality in moral integrity, Conflicts of interest	2
4.3	Occupational crime, Professional rights, Employee right, IPR Discrimination	2
$\mathbf{5}$	Module 5- Global Ethical Issues.	2
5.1	Multinational Corporations, Environmental Ethics, Business Ethics, Computer Ethics	2
5.2	Role in Technological Development, Moral leadership	1
5.3	Engineers as Managers, Consulting Engineers, Engineers as Expert witnesses and advisors	2

