KERALA TECHNOLOGICAL UNIVERSITY

Master of Technology

Curriculum, Syllabus and Course Plan

Cluster	:	Trivandrum
Branch	:	Mechanical Engineering
Stream	:	Machine Design
Year	:	2015
No. of Credits	:	67

SEMESTER 1

Slot					End Se Exami		
Examination	Course Number	Name	L-T-P	Internal Marks	Marks	Duration (hours)	Credits
А	01MA6011	Special Functions, Partial Differential Equations and Tensors	3-0-0	40	60	3	3
В	01ME6101	Advanced Theory of Vibration	3-1-0	40	60	3	4
С	01ME6103	Finite Element Method	3-1-0	40	60	3	4
D	01ME6105	Continuum Mechanics	3-0-0	40	60	3	3
Е	01ME6107	Industrial Tribology	3-0-0	40	60	3	3
S	01ME6999	Research Methodology	0-2-0	100			2
Т	01ME6191	Seminar-I	0-0-2	100			2
U	01ME6193	Machine Dynamics Lab	0-0-2	100			1
		TOTAL	15-4-4	500	300	-	22

TOTAL CONTACT HOURS

23

:

:

TOTAL CREDITS

22

SEMESTER 2

ı Slot			ks			mester nation	
Examination	Course Number	Name	L-T-P	Internal Marks	Marks	Duration (hours)	Credits
А	01ME6102	Advanced Theory of Mechanisms	3-1-0	40	60	3	4
В	01ME6104	Design of Pressure Vessels and Piping	3-0-0	40	60	3	3
С	01ME6106	Experimental Stress Analysis	3-0-0	40	60	3	3
D		Elective –I	3-0-0	40	60	3	3
Е		Elective-II	3-0-0	40	60	3	3
V	01ME6192	Mini Project	0-0-4	100			2
U	01ME6194	Modelling & Analysis Lab	0-0-2	100			1
		TOTAL	15-1-6	400	300	-	19

TOTAL CONTACT HOURS:22TOTAL CREDITS:19

Elective I

- 01ME6112 Design of Power Transmission Elements
- 01ME6114 Design & Analysis of Composite Structures
- 01ME6116 Advanced Computer Graphics
- 01ME6118 Condition Monitoring & Maintenance Engineering
- 01ME6110 Fracture Mechanics

Elective II

- 01ME6122 Optimization Techniques for Engineering
- 01ME6124 Acoustics and Noise Control
- 01ME6126 Advanced Finite Element Methods
- 01ME6128 Robotics

SEMESTER 3

Slot	ber					mester nation	
Examination	Course Number	Name	L-T-P	Internal Marks	Marks	Duration (hours)	Credits
А		Elective III	3-0-0	40	60	3	3
В		Elective IV	3-0-0	40	60	3	3
Т	01ME7191	Seminar II	0-0-2	100			2
W	01ME7193	Project (Phase 1)	0-0-12	50			6
		TOTAL	6-0-14	230	120	-	14

TOTAL CONTACT HOURS	:	20
TOTAL CREDITS	:	14

Elective III

01ME7111	Advanced Numerical Methods
	i la vaneed i vanieriear ivietneas

- 01ME7113 Advanced Non Destructive Evaluation
- 01ME7115 Advanced Design Synthesis
- 01ME7117 Mechatronics System Design
- 01ME7119 Computational Plasticity

Elective IV

- 01ME7121 Theory of plates and shells
- 01ME7123 Mechanical Behaviour of Materials
- 01ME7125 Computational Methods in Design & Manufacturing
- 01ME7127 Advanced Vehicle Dynamics
- 01ME7129 Control System
- 01ME6110 Fracture Mechanics

SEMESTER 4

Slot	ber	per		ks		ks	End Semester Examination		
Examination	Course Number	Name	L-T-P	Internal Marks	Marks	Duration (hours)	Credit		
W	01ME7194	Project (Phase 2)	0-0-23	70	30		12		
		TOTAL	0-0-23	70	30	-	12		

TOTAL CONTACT HOURS	-	23
TOTAL CREDITS	:	12

TOTAL NUMBER OF CREDITS: 67

SEMESTER - I

Syllabus and Course Plan

Course No.	Course Name	L-T-P	Credits	Year of Introduction			
01MA6011	Special Functions, Partial Differential Equations and Tensors	3-0-0	3	2015			
	Course	Objectives					
To introduce basic concepts of tensors and its applications to Continuum Mechanics							
To familiarize	with methods of solution of specia	al functions	and its applie	cation to Engineering			
problems.							
To equip with	the different methods of numerica	al solution o	f partial diffe	rentia l equations			
To familiarize	with integral equations, its formations	tion and app	olication.				
		llabus					
Voctor col.	-		1000 co Tl	ion tongor colorities of			
	s-Green's theorem-Stoke's Theore ors-integral equations-transform		8	Ũ			
	cal form-pde in polar coordinate	1		1			
Numerical solu	tion of partial differential equatio	ns.					
	Expecte	d Outcome					
	ne course the students will: ll be able to(1) Apply the concepts	of tensors to	o solve enging	pering problems(2) develop			
	edures to solve Design problems i		U	01			
	se advanced developments in sp rential equations in applications	ecial functio	ons, tensor ca	lculus, methods of solution			
		erences					
1. Advanced E	ngineering Mathematics – Erwin I	Kreyzig					
2. Vector, Tens	ors and Basic Equations of Fluid N	/lechanics –	Rutherford A	aris (Dover Publications)			
3. Schaum's ou	tline of Tensor Calculus – David H	Kay (Schaun	n's outline sei	ries)			
4. Applications	of Tensor Analysis – A. J. McCor	nell (Dover	Books on Ma	athematics, 2011)			
5. Introduction	to Tensor Calculus and Continue	ım Mechani	cs – John He	nry Heinbockel, Trafford			
Publishing 200	16.Integral equations-Santhisward	op-Krishna	Prakash mec	lia			
7. Higher Engi	7. Higher Engineering Mathematics - Dr. B. S. Grewal – Khanna Publishers						
8. Introduction to Partial Differential Equations – K. SankaraRao – Prentice Hall of India.							
		6					

	COURSE PLAN				
Module	Contents	Hours Allotted	% of Marks in End-Semester Examination		
I	Vector calculus: An introduction to vector calculus -gradient, divergence, curl - green's theorem, Divergence theorem, Stokes theorem	7	15		
II	Tensor calculus: Transformation of coordinates-Kronecker delta-contravariant tensor-tensor of high order-symmetric and skew symmetric tensors Metric tensor-contraction of a tensor-Christoffel symbols-transformation of Christoffel symbols	6	15		
	FIRST INTERNAL EXAM		•		
III	Integral Equations: Formation of Volterra and Fredhlom integral equations, solution of integral of equation of 2 nd kind by transform methods, convolution type, method of successive approximation and iterative method.	6	15		
IV	Partial differential equations:-Classification of PDE-Parabolic, elliptic and hyperbolic equationsreduction to Canonical form, Characteristics, Green functions, Solution of partial differential equations using Laplace Transform Method.	7	15		
	SECOND INTERNAL EXAM				
V	Special functions: Beta, Gamma functions, Bessel functions-recurrence relation, generating functions, Legendre's equations and Legendre's Polynomials – recurrence relation and orthogonality property	8	20		
VI	Numerical solutions of PDE: – Elliptic PDE – derivations of finite difference approximations – iterative method – solution of Poisson equation. Numerical solutions of parabolic PDE – Schmidt method, Durfort – Fankel method, implicit method, Crank- Nicolson method. Numerical solution of Hyperbolic PDE – finite difference method. END SEMESTER EXAM	8	20		
	END JEWIEJIEK EXAM				

Course No.	Course Name	L-T-P	Credits	Year of Introduction
01ME6101	Advanced Theory of Vibration	3-1-0	4	2015

Course Objectives

After completion of the course, the student should understand the concepts of dynamic systems and the importance of vibration in engineering system design. The course aim to teach students the basic principles underlying the vibration of mechanical and structural systems. The students shall be prepared to demonstrate an understanding of linear vibration theory and the basic formulations for n degree-of-freedom and continuous systems and they can determine and apply the appropriate solution method to calculate the response of the system. The course provides the basis for the vibration analysis of structural components in mechanical, aerospace, and civil engineering.

Syllabus

Analysis of un-damped, damped, free and forced SDOF systems, Transients – non periodic excitation of Single DOF systems. Two degree of freedom systems -dynamic vibration absorbers and damped vibration absorbers. Multi-degree freedom system- Matrix formulation. Lagrange's equation –Matrix Iteration. Vibration of continuous system. Approximate numerical methods- Holzer procedure for lumped masses.

Expected Outcome

At the end of the course the students will:

At the end of the course the students will:

- Write and solve the differential equations of motion of a mechanical system to determine the natural frequencies and response to free vibrations and to external periodic forces.
- Understand the various damping models and their effects on system behavior.
- Understand the matrix methods and other numerical approaches to solve for the vibration characteristics.

References

1. Leonard Meirovitch - Elements of Vibration Analysis, McGraw Hill

2. Thomson W.T, Theory of Vibration with Applications., Prentice Hall India.

3. Rao V and J Srinivas, Mechanical Vibrations, PHI Learning Pvt. Ltd.

4. S.S Rao, Mechanical Vibrations, Pearson Education India

5. B. Balachandran , Edward B. Magrab, Vibrations , Thomson Brooks/Cole-www.brookscoole.com

	COURSE PLAN				
Module	Contents	Hours Allotted	% of Marks in End- Semester Examination		
I	Oscillatory motion – Periodic motion- Analysis of un-damped, damped , free vibration- Logarithmic decrement –Introduction to harmonically excited vibrationsNumerical problems	4	15		
	Forced Vibration-magnification factor – Rotating and revolving unbalance – Base excitation – transmissibility – Vibration isolation-Structural damping- Numerical problems	4			
II	Transients – non periodic excitation of Single DOF systems – Impulseexcitation- Convolution Integral – Laplace Transform- Shock response spectrum	5			
	Two degree of freedom systems – normal modes and natural frequencies – Principal co-ordinates –co-ordinate coupling - dynamic vibration absorbers – Vibration Damper- Numerical problems	3	15		
	FIRST INTERNAL EXAM				
III	Introduction to multi-degree freedom system- Matrix formulation- Influence coefficients- Flexibility and stiffness-Orthogonality of Eigen vectors	4	15		
	Lagrange's equation – Generalized co-ordinates- Virtual work – Derivation of Lagrange's equation- Mode summation	5			
IV	Eigen Value problem Eigen value and Eigen vectors. frequency mode shape -Modal analysis.	4	15		
	Matrix Iteration – Stodola – and Sweeping methods- Cholesky Decomposition. – Jacobi diagonalisation- Numerical problems	3			
	SECOND INTERNAL EXAM				

v	Vibration of continuous system-Transverse vibration of strings- Longitudinal vibration of Rods- Numerical problems	6	20
	Torsional vibration of Rods- Euler Equation for beams- Numerical problems	6	
VI	Approximate numerical methods- Dunkerley's method - Rayleigh method - Rayleigh –Ritz method	8	
	Holzer procedure for lumped masses Introduction to Transfer matrices MATLAB program for torsional systems	4	20
	END SEMESTER EXAM		

Course No.	Course Name	L-T-P	Credits	Year of Introduction					
01ME6103	Finite Element Method	3-1-0	4	2015					
Course Objectives									
 Basic understanding of FEA. Preprocessing, solution and post processing Discretization of solution domain into a finite element mesh Assembly of element equations and boundary condition Solution for nodal unknowns and derived quantities over each element Finite element mesh refinement and convergence. Implementation and application of FEM in 1-D, 2-D and 3D static and dynamic structural analysi and heat conduction 									
		Syllabus							
Matrix algebra	in FEM, Methods of solution of	simultaneo	us equations,	Basic concepts of FEM, Virtual					
work and varia	ational methods, Introduction to t	he Stiffness	(Displacemer	nt) Method, Spring, Bar elements					
and torsion eler	ment, Development of truss equat	ions (Stiffne	ss matrix, loa	d vectors). Development of Euler					
beam equatior	ns, Frame and grid equations, Tr	ransformatio	on of coordin	nates.Interpolation functions for					
Plane Stress a	nt formulation. Patch test, different nd Plane Strain Stiffness Equation or when a f Plane Strang/Strain Arab	ons, Practic	al Considera	tions in Modeling, Interpreting					

Results and Examples of Plane Stress/Strain Analysis, Numerical integration, Full and reduced integration. Development of the CST, Linear-Strain Triangle Equations, Method of weighted residuals (Galerkin), Boundary conditions (Neumann, Dirichlet and Robin), Plate Bending Element. Axisymmetric Elements, Natural coordinates systems, Isoparametric Formulation, Three-Dimensional Stress Analysis, Lagrange and Serendipity Elements. Heat Transfer, Thermal Stress, Structural Dynamics, Evaluation of eigen values and eigen vectors, Transient analysis: Euler's method, Central difference technique, Rigid body modes.

Expected Outcome

At the end of the course the students will:

- Understand the fundamental ideas of the FEM like meshing, solution and post processing
- Know the behavior and usage of each type of elements covered in this course
- Be able to prepare a suitable FE model for structural mechanical analysis problems
- Be able interpret and evaluate the quality of the results
- Be aware of the limitations of the FEM to avoid GIGO (Garbage In Garbage Out)
- Gain an insight into programming FE

Efficient and effective use of commercial FE software like ANSYS, NASTRAN, ABAQUS

References

1. Finite element procedures K. J. Bathe, PHI

2. The Finite element methods in engineering, SSRao

3. Introduction to finite elements in engineering, T. R. Chandrupatla and Ashok D. Belegundu, PHI

- 4. Elementary Finite Elements Method, Desai C. S.
- 5. The Finite Element Method, Zienkiewicz O. C.
- 6. Applied finite element analysis, Larry J.Segerlind
- 7. Finite Element Method, R. D. Cook
- 8. Finite Element Method, C.S. Krishnamurthy
- 9. Basics of F E M- Solid Mechanics, Heat transfer and Fluid mechanics, Dubuque I A and W C Brown.

Text Books:

- 1. Fundamentals of FEM by David V Hutton, Mc Graw Hill
- 2. A First Course in the Finite Element Method Fifth Edition Daryl L. Logan Thomson
- 3. An introduction to the Finite Element Method, 3rdEdn. Reddy J. N.

	COURSE PLAN					
Module	Contents	Hours Allotted	% of Marks in End-Semester Examination			
	Matrix algebra in FEM, Methods of solution of simultaneous equations, Basic concepts of FEM, Virtual work and variational methods,	4				
Ι	Introduction to the Stiffness (Displacement) Method, Spring, Bar elements and torsion element, Development of truss equations (Stiffness matrix, load vectors)	4	15			
	Development of Euler beam equations, Frame and grid equations, Transformation of coordinates.	4				
II	Interpolation functions for general element formulation. Patch test, different type of refinements (h, p and r)	4	15			
	FIRST INTERNAL EXAM					
III	Development of the Plane Stress and Plane Strain Stiffness Equations	4	15			
	Practical Considerations in Modelling, Interpreting Results and Examples of Plane Stress/Strain Analysis	4				
IV	Development of the CST, Linear-Strain Triangle Equations,	4	15			
	Method of weighted residuals (Galerkin), Boundary conditions (Neumann, Dirichlet and Robin), Plate Bending Element	4				
	SECOND INTERNAL EXAM					
v	Axisymmetric Elements, Natural coordinates systems, Isoparametric Formulation	4	20			
	Numerical integration, Full and reduced integration	4				
	Three-Dimensional Stress Analysis, Lagrange and Serendipity Elements	4				
	Structural Dynamics, Mass matrix computation, Evaluation of eigen values and eigen vectors, Modal space,	4				
VI	Transient analysis: Euler's method, Central difference technique, Critical time step, Rigid body modes.	4	20			
	Newton Raphson method for solving nonlinear differential equations	4				

END SEMESTER EXAM

Course No.	Course Name	L-T-P	Credits	Year of Introduction					
01ME6105	Continuum Mechanics	3-0-0	3	2015					
Develop a syste	Course Objectives Develop a systematic and in-depth understanding of the principles of continuum mechanics.								
	S	Syllabus							
Kinematics and	continuum theory, mathematical j d strain, Balance laws, Constitu Fluid Mechanics and Viscoelastici	utive relation	-						
	Expec	ted Outcom	ie						
mechani Be conv and solv Have an mechani Be equipped to	comprehensive, systematic and cs ersant with physical laws and anal e continuum problems in-depth understanding of the co cs and fluid mechanics – hitherto o pursue further specialized areas to which are essentially based on c	lytical tools mmon print considered r s of study s	such as tenso ciples which nostly separa such as aeroe	or calculus required to formulate underlie the disciplines of solid te.					
	R	eferences							
1. G. Thon ed CRC	nas Mase, George E. Mase Ronal		er. Continuun	n mechanics for engineers 3rd					
2. Lawrence	e E. Malvern. Introduction to the	Mechanics of	of a Continuo	us Medium – Prentice Hall					
	nbockel, Introduction to Tensor C			-					
	nael Lai, David Ribin, Erhard Kaer	npl, Introdu	ction to Cont	inuum Mechanics 4th Ed.,					
	orth- Heinemann ddy, An Introduction to Continuur	n Mechanic	s with applica	ations - Cambridge University					
6. Y.C.Fu	ng, A First Course in Continuum	Mechanics f	for Physical a	nd Biological Engineers and					
	n W, Continuum mechanics and p	•							
	r Nair, Introduction to Continuum								
	E. Gurtin, An introduction to conti								
10. S.P. 11m	oshenko, J.N. Goodier, Theory of	Elasticity, 3	ra Eaition, M	CGraw Hill Publishing					

	COURSE PLAN						
Module	Contents	Hours Allotted	% of Marks in End-Semester Examination				
	Introduction to continuum mechanics – concept of continua in solid- and fluid mechanics – evolution, relevance and scope of the subject. Mathematical preliminaries - Index notation, Einstein's summation convention, Kronecker delta and Levi-Civita symbols, Matrix algebra, Cayley Hamilton theorem	3					
Ι	Concept of tensor - Vector space- Inner product space- Cartesian basis- Tensor as a linear transformation- Vector as a first order tensor- Second order tensor expressed as a dyad- Dyadic product- Components of a tensor- Coordinate transformation of vectors and tensors- Principal values, trace and invariants- Orthogonal and isotropic tensors- Symmetric and anti symmetric tensors- Spherical and deviatoric tensors Algebra and calculus of tensors - Dot and cross products, scalar triple product, tensor product, inverse, contraction - Gradient, divergence and curl of vector and tensor fields - Gauss' divergence and Stokes' theorems	3	15				
п	Traction and stress - Surface tractions in reference and current configurations; Cauchy and first Piola-Kirchoff stress tensors; Cauchy stress components along orthonormal basis vectors; Components of Cauchy stress vector on any plane;.	3					
п	Principal stress components; Principal planes; Principal coordinate system; Normal and shear stresses; Spherical and deviatoric stresses; Octahedral stress; Stress transformation; Mohr's circle for 3D and 2D stresses	4	15				
	FIRST INTERNAL EXAM						

	Kinematics and strain - Continuum body; Reference and current configurations; Lagrangian and Eulerian descriptions of motion; Material and spatial derivatives; Displacement, velocity and acceleration fields Extension of a line element; Deformation gradient tensor; Displacement gradient tensor; Nanson's formula	3	15
III	Polar decomposition theorem; Right and left Cauchy Green tensors; Infinitesimal deformation theory; Linearized strain; Infinitesimal rotation; Rate of deformation gradient, velocity gradient and spin tensors; Determinant of deformation gradient Geometric interpretation of small deformation theory; Strain transformation; Principal strains; Saint Venant strain compatibility equations	4	15
IV	Balance Laws - Reynold's transportation theorem; Localization theorem; Deformation of a volume element; Lagrangian and Eulerian forms of equation for mass balance	3	15
	Continuity equation; Balance of linear momentum equation; Equilibrium equations; Balance of angular momentum; Symmetry of stress tensor; Law of conservation of energy; Principle of virtual work	3	
	SECOND INTERNAL EXAM		
	Constitutive relations - Invariance of constitutive equations; Material frame indifference; Linear elasticity; Material symmetry; Independent constants in the 4 th order elasticity tensor for anisotropic, monoclinic, orthotropic and transversely isotropic materials;	4	
V	Generalized Hooke's law for isotropic materials in indicial and matrix forms; Lame's constants, Young's modulus, Poisson's ratio and Bulk modulus, Beltrami-Michell compatibility equations; Navier's equations. 2D formulation of field equations; Airy's stress function; Biharmonic equation	4	20
VI	Uni axial tension and pure bending of a beam; End loaded cantilever; Polar coordinates; Axisymmetric formulation; Lame's thick cylinder problem; Quarter circle cantilevered beam with radial load; Uni axially loaded large plate with a small circular hole.	4	20
	plate with a small circular hole.Torsion formulation; Torsion of a solid elliptical shaft; Torsion of a cylinder with equilateral triangular section; Overview about the application of continuum mechanics for viscoelastic materials and fluids .	4	20
	END SEMESTER EXAM		

Course No.	Course Name	L-T-P	Credits	Year of Introduction				
01ME6107	Industrial Tribology	3-0-0	3	2015				
Course Objectives Develop the essential knowledge both practical and theoretical in the field of tribology.								
	Sy	yllabus						
	Tribology , Friction, Wear, Fundar ic bearings, Theory of Hydrostatic							
	Expect	ed Outcome	2					
 Have a c and lubr Have a c related p Have the 	e course the students will: comprehensive, systematic and in rication. critical and coherent understandi problems. e ability to identify, analyze and a selection and design procedures o	ng of the m ddress indu	ethods used strial friction	to combat friction and wear- and wear-related problems.				
	Re	ferences						
Text Books :								
	ovsky: Theory of lubrication of bea .D: Theory and practice of lubrica	0		1 5				
	chings: Tribology-University of Ca	0	J =					
	.W.Stachowiak and Andrew.W.Ba ann Publishers	atchelor-Eng	ineering Trib	ology-Butterworth				
	husan: Introduction to Tribology-	John Wilev	& Sons, Inc.					
	i and Booser: Applied Tribology:	•		rication, Wiley.				
	ımarSrivastva: Tribology in Indus		C	•				
	umdar: Introduction to Tribology	-	5 Chand Publ	ishing.				
	arkar: Friction and Wear, Pergame es of Lubrication – A Cameron, Le		reen Co-Ltd					
Reference books								
1 O'Cor	ner and Boyd : Standard Hand Bo	ook of Lubri	cation Engine	eering McGraw Hill				
	devan, Design Data Hand Book							
3. Dune	can Dowson, History of Tribo ing, 1997.	ology, Seco	ond Edition	, Professional Engineering				

	COURSE PLAN		
Module	Contents	Hours Allotted	% of Marks in End-Semester Examination
	Introduction to tribology- Origins and significance of Micro/Nanotribology – tribological parameters like friction, wear and lubrication. Nature of surfaces-Physico-chemical characteristics of surface layers- Analysis of surface roughness- Measurement of surface roughness- Measurement of real area of contact.	4	
I	Surface force apparatus (SFA) studies- Description of an SFA- Static, Dynamic and Shear properties of molecularly thin liquid films- Description of Atomic force microscope (AFM) and Friction force Microscope (FFM)-Friction and adhesion-Atomic scale friction- Microscale friction - Nanoscale wear - Microscale scratching - Microscale wear.	3	15
	Friction: Types of friction-dry-boundary and fluid-laws of friction and friction theories-Tomlinson hypothesis, Bowden and Tabor theory-	3	
II	Friction of metals, ceramic materials and polymers-Variables in friction – Surface cleanliness – effect of pressure, velocity, temperature, vibration etc.	3	15
	FIRST INTERNAL EXAM	I	
III	Wear – Classification – Running in wear-theories of wear- stages of wear- Types of wear mechanisms- adhesive and abrasive wear- factors affecting wear. Types of particles present in wear debris.	3	15
	Wear of materials. Tests and Instrumentation in Tribology. Sliding friction and wear abrasion test, rolling contact and fatigue test, solid particle and erosion test, Corrosion test.	3	
IV	Lubrication: Role of lubrication- Lubricants-selection of lubricants- Importance of viscosity and methods for measuring viscosity- fundamentals of viscous flow- flow through capillary tube – flow between parallel pates -radial flow between parallel circular plates	4	15

	Flow between parallel pates -radial flow between parallel circular plates,		
	Squeeze film lubrication –Reynolds's equation.	3	
	SECOND INTERNAL EXAM		
	Bearings- classification and applications- Selection of bearings.	2	
V	Hydrodynamic bearings: Journal bearings eccentricity-pressure distribution – attitude angle, load carrying capacity, Petroff's equation – friction and power loss-ideal and real bearings – leakage factors- sommerfield number and design charts	3	20
	Oil flow and heat dissipation in bearings- Analysis of hydro thrust bearings – Fixed and pivoted shoe bearings.	3	
	Hydrostatic bearings: Analysis of oil pads-hydrostatic step bearings- hydrostatic thrust bearing with shoes-	2	
VI	Role of restrictors- bearing materials and lubricants.	2	20
	Rolling element bearings: Types - static and dynamic capacities-bearing life – Stribeck's equation- cyclic loading	2	20
	Selection of bearings- lubrication, mounting of bearings.	2	
	END SEMESTER EXAM	1	

Course No.	Course Name	L-T-P	Credits	Year of Introduction
01ME6999	Research Methodology	0-2-0	2	2015

Course Objectives

- 1. To prepare the student to do the M. Tech project work with a research bias.
- 2. To formulate a viable research question.
- 3. To develop skill in the critical analysis of research articles and reports.
- 4. To analyze the benefits and drawbacks of different methodologies.
- 5. To understand how to write a technical paper based on research findings.

Syllabus

Introduction to Research Methodology-Types of research- Ethical issues- Copy right-Royalty-Intellectual property rights and patent law-Copy left- Open access-

Analysis of sample research papers to understand various aspects of research methodology:

Defining and formulating the research Problem-Literature Review-Development of working Hypothesis-Research design and methods- Data Collection and analysis- Technical writing- Project work on a simple research problem

Approach

Course focuses on students' application of the course content to their unique research interests. The various topics will be addressed through hands on sessions.

Expected Outcome

Upon successful completion of this course, students will be able to

- 1. Understand research concepts in terms of identifying the research problem
- 2. Propose possible solutions based on research

3. Write a technical paper based on the findings.

4. Get a good exposure to a domain of interest.

5. Get a good domain and experience to pursue future research activities.

References

- 1. C. R. Kothari, Research Methodology, New Age International, 2004
- 2. Panneerselvam, Research Methodology, Prentice Hall of India, New Delhi, 2012.
- 3. J. W. Bames, Statistical Analysis for Engineers and Scientists, Tata McGraw-Hill, New York.
- 4. Donald Cooper, Business Research Methods, Tata McGraw-Hill, New Delhi.
- 5. Leedy P. D., Practical Research. Planning and Design, McMillan Publishing Co.
- 6. Day R. A., How to Write and Publish a Scientific Paper, Cambridge University Press, 1989.
- 7. Manna, Chakraborti, Values and Ethics in Business Profession, Prentice Hall of India, New Delhi, 2012.
- 8. Sople, Managing Intellectual Property: The Strategic Imperative, Prentice Hall ofIndia, New Delhi, 2012.

	COURSE PLAN					
Module	Contents	Hours Allotted	% of Marks in End-Semester Examination			
п	Introduction to Research Methodology: Motivation towards research - Types of research: Find examples from literature. Professional ethics in research - Ethical issues-ethical committees. Copy right - royalty - Intellectual property rights and patent law - Copyleft- Openacess-Reproduction of published material - Plagiarism - Citation and acknowledgement. Impact factor. Identifying major conferences and important journals in the concerned area. Collection of at least 4 papers in the area. Defining and formulating the research problem -Literature Survey- Analyze the chosen papers and understand how the authors have undertaken literature review, identified the research gaps, arrived at their objectives, formulated their problem and developed a hypothesis.	5				
	FIRST ASSESSMENT					
ш	Research design and methods: Analyze the chosen papers to understand formulation of research methods and analytical and experimental methods used. Study of how different it is from previous works.	4	No end semester written examinatio			
IV	Data Collection and analysis. Analyze the chosen papers and study the methods of data collection used Data Processing and Analysis strategies used– Study the tools used for analyzing the data.	5	n			
	SECOND ASSESSMENT					
V	Technical writing - Structure and components, contents of a typical technical paper, difference between abstract and conclusion, layout,	5				

	illustrations and tables, bibliography, referencing and footnotes-use of tools like Latex.				
VI	Identification of a simple research problem – Literature survey- Research design- Methodology –paper writing based on a hypothetical result.	5			
	END SEMESTER ASSESSMENT				

Course No.	Course Name	L-T-P	Credits	Year of Introduction
01ME6191	SEMINAR I	0-0-2	2	2015

To make students

Course Objectives

- 1. Identify the current topics in the specific stream.
- 2. Collect the recent publications related to the identified topics.
- 3. Do a detailed study of a selected topic based on current journals, published papers and books.
- 4. Present a seminar on the selected topic on which a detailed study has been done.
- 5. Improve the writing and presentation skills.

Approach

Students shall make a presentation for 20-25 minutes based on the detailed study of the topic and submit a report based on the study.

Expected Outcome

Upon successful completion of the seminar, the student should be able to

- 1. Get good exposure in the current topics in the specific stream.
- 2. Improve the writing and presentation skills.

3.Explore domains of interest so as to pursue the course project.

	01ME6193	L-T-P: 0-0-2			
	Machine Dynamics Lab	Credits : 1			
SL. NO	Experiment	Main equipments required			
1	Study of vibrations of a box stationed on flexible springs.	Motor, Box, Springs, Variator, Tachometer, etc			
2	Study of absorber system and its tuning for a fixed beam.	Motor , Tuned damper , Variator, Auxiliary mass Tachometer , etc.			
3	Study of free and forced vibration using universal vibration machine	Speed controller, motor, disc, tachometer, spring, damper, drum. Etc.			
4	Estimation of damping of beam specimen for different damping treatments	Beam specimen of Steel, Viscoelastic material for attachments, Accelerometer, Charge amplifier, Oscilloscope			
5	To find the natural frequencies and mode shapes of a free-free beam experimentally and verify the same analytically	Vibration exciter, Arbitrary function generator, free-free beam, Oscilloscope, Amplifier, laser displacement meter			
6	Noise mapping of a machine using sound intensity probe	Sound Intensity probe and FFT analyzer			
7	To verify the inverse square law for sound	Frequency generator, speaker and sound level meter			
8	Study of various function of Sound Level Meter and use it for field measurements	Integrating Sound level Meter, Calibrator etc.			
9	To get the transmission loss of any panel eg. door	Sound Level meter, Signal generator, amplifier, speaker.			
10	To study the sound of musical instruments	Musical Instruments (Tabla, guitar), microphone, amplifier, FFT Analyzer			
11	Determination of natural frequencies and mode shapes of a free-free plate.	laser displacement meter/Accelerometer, Oscilloscope, Exciter, plate, Labview sound and vibration tool kit			
12	Use of Laser Doppler Vibrometer for measurement of complex structures	scanning laser Doppler vibrometer			
13	Determination of Young's modulus and shear modulus of the given specimens using ultrasonic longitudinal and shear velocities.	UntrasonicPulser-receiver, Transducers, Computer, DAC.			

14	Micro structural examination of the given specimens using optical metallography and the determination of grain size	Polishing Machine, Optical Microscope
15	Determination of mechanical properties of material (Yield Strength, Tensile Strength,	Computerized Universal Testing machine
	Elastic modulus) of the given specimen	
16	Determination of the hardness of the given	Micro Hardness Tester, Polishing Machine
	specimen.	

.

SEMESTER - II

Syllabus and Course Plan

Course No.	Course Name	L-T-P	Credits	Year of Introduction		
01ME6102	Advanced Theory of Mechanisms	3-1-0	4	2015		
	Course	e Objectives				
	ate knowledge in the field of ki I Dynamic analysis.	nematic anal	ysis, synthesis	s and design of		
	S	yllabus				
	cs of Rigid Bodies					
Curvature Theor	-					
Four-bar couple Cams	r-point curves					
Synthesis of me	chanisms					
Dynamics						
	Fxnect	ed Outcome				
At the end of the	e course the students will:	en Sucome				
	omprehensive knowledge for the	e analysis of	velocitv and a	cceleration in mechanisms.		
	e ability to synthesize and d	•	•			
applicati	ons.	-	-			
• Have the	e ability to design cams and anal	lyze its dynai	nic effects.			
Have the appropriate of the second seco	he ability to analyze the dynam riately.	ics of movin	g members in	the machinery and design		
	Re	ferences				
Text Books:						
-	cs in Engineering Practice- Dara	-	-	Q II.11/		
•	of Machines and Mechanisms- J Aechanics for Engineers: Statics	1	0.	,		
	ring Mechanics- Irving H Sham	•		Johnston (McGraw Hill)		
e	0	·	,	s Denavit(Mc Graw Hill)		
7. Cam Design Handbook-Harold A Rothbart. (McGraw Hill)						
Reference book	-		,			
1. Kinemat	ics and Dynamics of plane moti	on-Hirchorn	J(Mc Graw H	Hill)		
	ic Analysis and Synthesis of M		•	•		
	Gunter Dittrich(CRC Press)					
3. Advance	ed Mechanism Design: Analysis	and Synthes	is,George N S	Sandor and Arthur G		
Erdman.	Prentice Hall.					

COURSE PLAN				
Module	Contents	Hours Allotted	% of Marks in End-Semester Examination	
I	Planar Kinematics of Rigid Bodies : Velocity and acceleration relationships for two points in a rigid link -Vector approach, two-coordinate system approach for velocity and acceleration, applied to planar mechanisms:	4	15	
	Slider-crank mechanisms, four bar linkages. Graphical approach to velocity and acceleration in mechanisms. Brief introduction to complex mechanisms.	4		
	Curvature Theory : Instantaneous centre or Pole, centrode or polode, polode curvature, collineation axis, radius of curvature.	5		
Π	The Euler-Savary equation, the inflection circle, Hartmans construction, Bobillier constructions, the cubic of stationary curvature. Design based on the above	3	15	
	FIRST INTERNAL EXAM			
III	Four-bar coupler-point curves ; Equation of coupler curves, circle of foci, multiple points, imaginary points, asymptote.	4	15	
	Singular foci, double points and symmetry, cusp, crunode, symmetry. The Roberts-Chebychev Theorem and cognate linkages.	4		
IV	Cams: Polydyne cams: Cam Dynamics: Acceleration and Jerk. Analysis of eccentric cam, effect of sliding friction, Analysis of disc cam with reciprocating roller follower.	5	15	
	Analysis of elastic cam systems, follower response: Phase-plane method, Johnson's numerical analysis .Position error, Jump and cross-over shock, unbalance, spring surge and wind-up. Cam force analysis.	3	10	
	SECOND INTERNAL EXAM			
v	Synthesis of mechanisms : The four-bar linkage, Two and Three position design.	6	20	
v	Design of slider crank and double lever mechanisms for specified input crank motion and output crank motion, Determination of minimum Transmission angle.	6	20	
VI	Dynamics : Plane motion of rigid bodies using the principle of impulse and momentum. Kinetics of rigid bodies in three dimensions:- Angular	8	20	

momentum of a rigid body in three dimensions. Application of the principle of impulse and momentum to the three-dimensional motion of a rigid body Kinetic energy of a rigid body in three dimensions.		
Motion of a rigid body in three dimensions. Euler's equation of motion. Motion of a rigid body about a fixed axis. Motion of gyroscope: Eulerian angles Steady precession of a gyroscope. Motion of an axi-symmetrical body under no force.	4	
END SEMESTER EXAM		

Course No.	Course Name	L-T-P	Credits	Year of Introduction		
01ME6104	Design of pressure vessels and piping	3-0-0	3	2015		
	Cours	se Objective	25			
To gain knowledg codes in design.	e of pressure vessel design, desig	ning of pipin	ng and piping	systems, and using of design		
	S	Syllabus				
Stresses in Thick Design of Tall C Reinforcement th Buckling of Press	Terminology of Pressure Vessels- Stresses in pressure vessels Stresses in Thick walled cylinders & Built up cylinders Design of Tall Cylindrical Self Supporting process column Reinforcement theory Buckling of Pressure Vessels Design of Piping					
	Expec	ted Outcom	ie			
At the end of the	course the students will:					
	nts will understand how the theory e end of the course students will k	•	•	1		
	R	eferences				
U U	k is to be permitted in the Univer-	•				
·	t by Faculty of Mechanical Engined book for Mechanical Engineerin	0		wK Mahadayan K Balayaara		
Reddy				by K. Manadevan, K. Daraveera		
Standard Pressur	e Vessel Design Data Handbook r	ref. ASME I	SI IBR)			
Text Books :	<i>.</i>					
	larvey, 'Theory and Design of Pre					
	 Brownell, L. E., and Young, E. H., Process Equipment Design, John Wiley and Sons SomnathChathopadhyay, Pressure Vessels Design and practice, C. R. C Press 					
Reference books :						
1. Henry H.	Bender, 'Pressure Vessels Design h	and book'				
•	essure Vessel Codes Section VIII, 2					
3. Dennis Moss Pressure Vessel Design Manual Gulf publishing, 2003						

COURSE PLAN				
Module	Contents	Hours Allotted	% of Marks in End-Semester Examination	
I	Pressure vessel – Terminology – Types of loads – Types of pressure- Stresses in pressure vessels – Dilation of pressure vessels – Membrane stress analysis of vessel shell components Cylindrical shells, spherical shells, conical head, elliptical head – Discontinuity stresses in pressure vessels - Thermal stresses	3	15	
II	Stresses in thick walled cylinders – Lame's equation - Shrinkfit stresses in Built up cylinders, autofrettage of thick cylinders – Thermal stresses and its significance	4	15	
	FIRST INTERNAL EXAM			
III	Design of vessels ; Design of tall cylindrical vessels	3	15	
	supports for short vessels –Support for horizontal vessels	3		
IV	Design for wind load – design for seismic load and vibration– 4			
	Theory of reinforcement, Familiarization of relevant ASME codes and standard practices	3	15	
	SECOND INTERNAL EXAM	1		
v	Buckling – buckling phenomenon – Elastic buckling of cylinders under external pressure	4	20	
	Stiffeners - buckling under combined compressive pressure and external load	4		
VI	Piping – Pipe specification – Pipe classification – Piping elements – 3 3 3			
	Piping layout and piping stress Analysis – Flexibility Analysis (Practice of software such as CAESAR,CAEPIE, PVELITE etc. Not included in examination)	5	20	
	END SEMESTER EXAM	1		

Course No.	Course Name	L-T-P	Credits	Year of Introduction	
01ME6106	Experimental Stress Analysis	3-0-0	3	2015	
	Cour	se Objectivo	es		
The course ince	anto to the students the basis con	ante of the or		and stress strein relationship	
-	arts to the studenrs, the basic asp imental stress analysis that inclu-			-	
-	d non destructive test (NDT) me			inques nice photoenastienty,	
Overview of str		Syllabus			
Strain measuren	•				
Instrumentation					
Photoelasticity					
Brittle coatings					
Non destructive	testing (NDT) methods				
	Expe	cted Outcon	ne		
On completion of	of the course, the students will be	e able to und	lerstand:		
• the d	lifferent types of strain gauges ar	d related in	strumentation		
	oelastic techniques of stress anal		strumentation		
	oncepts of brittle coatings				
the d	lifferent NDT methods				
	R	eferences			
Text Books :					
1 I W D:	ally and W. F. Riley, Experiment	tal Stress Ar	nalvsis - McG	raw Hill 1991	
	nath, M.R. Raghavan, K. Lingaia		•		
Experim	ental Stress Analysis, Tata Mc C	Graw Hill, 19	984.		
	n, Experimental Stress Analysis,				
	ingh, Experimental Stress Analy				
 Jayamangal Prasad, C. G. Krishnadas Nair, Non-Destructive Test And Evaluation Of Materials, Tata McGraw-Hill, 2008 					
	Iman, Experimental methods for	engineers, N	AcGraw-Hill	Mechanical Engineering,	
Reference book	s :				
1. M. Hete 1950	nyi, Handbook of Experimental	Stress Analy	vsis, John Wild	ey & Sons Inc, New York,	

- 2. R.C.Dove and P.H.Adams, Experimental Stress Analysis and Motion Measurement, Macmillan Publishing Company, 1964
- 3. C.C. Perry and H.R. Lissener, Strain Gauge Primer, McGraw Hill, 2nd Ed., 1962.
- 4. W.J. McGonnagle-Non-destructive Testing-Mc Graw Hill, 1961.
- 5. Davis Joseph R. (ed.), .American Society for Metals Handbook- Volume 17, Non-destructive Evaluation and Quality Control, ASM International Materials Park, Ohio.

	COURSE PLAN		
Module	Contents	Hours Allotted	% of Marks in End-Semester Examination
I	Overview of stress analysis : Theory of Elasticity, Plane stress and plane strain conditions, compatibility conditions, problem using plane stress and plane strain conditions, three-dimensional stress strain relations. Principal stresses and strains. Mohr's circle-measurement of strains and	3	15
	stresses. Stress analysis – Analytical, Numerical and Experimental approaches.	3	
	Strain measurement : Strain gauges and Stress gauges. Mechanical, Optical and Electrical gauges- construction and applications.	2	
п	Variable resistance strain gauges, Gauge characteristics, Gauge sensitivity, static and dynamic strains- reduction of strain gauge data- compensation-strain measurement over long period at high and low temperature.	3	15
	Strain rosettes- Rectangular rosette, Delta rosette. Residual stresses: Beneficial and harmful effects – Principle of residual stress measurement- methods only. Moire Method of Strain Analysis	2	
	FIRST INTERNAL EXAM		
III	Instrumentation : Strain Circuits, Potentiometer Circuits ,Range and sensitivity, The Wheatstone Bridge , Sensitivity, Galvanometer, Transient response, Principles of Measurement: Errors, Accuracy and Precision, Uncertainity analysis, Curve fitting	3	15
	Oscillograph, Cathode Ray Oscilloscope, Transducers- Displacement, Force, Pressure, Velocity, Acceleration	3	
IV	Photoelasticity : The Polariscope, stress optic law, Photo elastic model materials, Polariscope arrangements – Plane polariscope and Circular polariscope,	4	15
	Dark Field and Light field, Isochromatics and Isoclinics, Jones Calculus, Partial fringe value and compensation techniques. Introduction to three dimensional photoelasticity, Use of photo elastic coatings.	3	
	SECOND INTERNAL EXAM		

	Brittle coatings : Coating stresses, Failure theories, Brittle coating crack patterns produced by direct loading, refrigeration, load release,	4	20
v	Crack detection, Types of coatings, Steps in brittle coating tests, Coating selection, Surface preparation.	4	20
VI	Non destructive testing (NDT) methods : Types –dye penetrate methods, Radiography-X-ray and Gamma ray-X-ray fluoroscopy-	5	20
	Penetrameter-Magnetic particle method. Introduction to lasers in NDT – Ultrasonic flaw detection	3	
	END SEMESTER EXAM		

Course No.	Course Name	L-T-P	Credits	Year of Introduction
01ME6112	Design of power Transmission Elements	3-0-0	3	2015
	Course	Objectives	i	
U	dge of industrial design and analy cedure available for design of power tr	-		
	Sy	llabus		
0	smission systems for flexible eleme l helical gears, Bevel and worm ge	e		•
• the diff	Expecte of the course, the students will be erent types of power transmission power transmission systems			
(PSG Data bo Design Data H Balaveera Red	ook is to be permitted in the Unive ok by Faculty of Mechjanical Engi andbook for Mechanical Engineer dy gn Data Book by V. B. Bhandari)	neering, P S	5 G,	sbyK. Mahadevan, K.
	ShigleyJ.E and Mischke C. R., " Tata McGraw-Hill , 2003. V. B. Bhandari, "Design of Mac Sadhu Singh, Mechanical Mac	hine Elem	ents", Tata N	fc Graw Hill, 2002.
Reference bool	ks :			
 Design of M Design of M 	oad vehicles-Newcom and Spurr achine elements-Vol II-Nieman achine elements-Reshtov achine elements-Dobrovolkshy nicles- Wong			

	COURSE PLAN		
Module	Contents	Hours Allotted	% of Marks in End-Semester Examination
I	Selection of V belts and pulleys, selection of Flat belts and pulleys Selection of Wire ropes and pulleys,	3	15
-	Selection of Transmission chains and Sprockets. Design of pulleys and sprockets.	4	10
	Design of plate clutches, axial clutches, cone clutches, internal expanding rim clutches.	3	
II	Brakes, internal and external shoe brakes disk brakes-self actuating brakes fixed, link and sliding anchor drum brakes.	3	15
	FIRST INTERNAL EXAM		
III	Shafts: Design of shafts subjected to twisting moment, bending moment, combined twisting and bending moments	3	15
	Design of shafts subjected to fluctuating loads, design of shafts based on rigidity.	3	
IV	Gear Terminology, Speed ratios and number of teeth, Force analysis, Tooth stresses, Dynamic effects, Fatigue strength, Factor of safety, Gear materials, Module and Face width-power rating calculations based on strength and wear considerations,	4	15
	Parallel axis Helical Gears, Pressure angle in the normal and transverse plane- Equivalent number of teeth-forces and stresses. Estimating the size of the helical gears.	3	
	SECOND INTERNAL EXAM		
v	Straight bevel gear: Tooth terminology, tooth forces and stresses, equivalent number of teeth. Estimating the dimensions of pair of straight bevel gears.	4	20

	Worm Gear: Merits and demerits- terminology. Thermal capacity, materials-forces and stresses, efficiency, estimating the size of the worm gear pair.	4	
	Geometric progression, Standard step ratio, Ray diagram, Structural diagram, kinematics layout	4	
VI	Design of sliding mesh gear box, Constant mesh gear box. Synthesis of multi speed gear boxes.	4	20
	END SEMESTER EXAM		

Course No.	Course Name	L-T-P	Credits	Year of Introduction
01ME6114	Design & Analysis of Composite Structures	3-0-0	3	2015
	Cours	se Objectivo	25	
Course Objectiv	ves:			
composit • To gain k structure • To gain k	knowledge of Different types of er te materials. knowledge of composites, types, a s. knowledge of stress analysis and f knowledge of basic design princip	pplications,	manufacturin sis of compos	ng and mechanics of composite
		- 11 1		
		Syllabus		
0	ations of Composites, Micro mech e theory, Failure theory of lamina			•
	Expec	cted Outcon	ne	
	will understand how to select a c red application.	omposite m	aterial a suita	ble manufacturing method for
	d of the course students will known of the failure mechanisms and te		0 1	1
	R	eferences		
(PSG Data bool Design Data Har <u>Reddy</u>	ok is to be permitted in the Univer < by Faculty of Mechjanical Engin ndbook for Mechanical Engineerin Data Book by V. B. Bhandari)	eering, PSO	ר ע	oy <u>K. Mahadevan</u> , <u>K. Balaveera</u>
Publishing Co 2. J. N. Reddy an	ai and H. Thomas Hahn, _Introdu ompany, Inc. Lancaster, 1980. nd A.V. Krishna Moorty, –Compo ng House, New Delhi., 1992.		-	
Text Books :				
1. R. M. Jones,- 1	Mechanics of Composite Material	, McGraw H	lill Publishing	5.

- 2. S.S. W. Tsai, Composites Design, Think Composites, 1986.
- 3. B. D. Agrawal and L.J. Brountman, Analysis and Performance of Fiber Composite, Willey New York, 1980.
- 4. Geoff Eckold, Design and Manufacture of Composite Structures, Wood –Heed, Publishing Limited, Cambridge, England, 1994.

	COURSE PLAN		
Module	Contents	Hours Allotted	% of Marks in End-Semester Examination
I	Classical laminate theory - Hooke's law for anisotropic, monoclinic, orthotropic and transversely isotropic material.	4	15
	Macro mechanical behavior of a lamina. Determination of laminate mechanical properties for laminates.	4	
II	Strength failure criteria- maximum stress, maximum strain criteria, Tsai Hill and Tsai-Wu theories for an angle laminate.	3	45
	Micromechanical behavior of a lamina- volume and mass fractions, density and void content, evaluation of elastic moduli.	4	15
	FIRST INTERNAL EXAM		
III	Kirchhoff's assumption, Equilibrium equation s for laminated plates, buckling equations for laminated plates, vibration equations for laminated plates	4	15
	Solution techniques- symmetric, antisymmeric cross ply laminates. Impact and fatigue characteristics	4	
IV	Differences in fracture behviour of isotropic and composites. Type of fracture in composites- interlaminar and, intralaminar fracture.	4	15
	Modified crack closure approach - assess the failure strength. Evaluation of fracture toughness.	3	
	SECOND INTERNAL EXAM		
v	Basic principles of sandwich structures, manufacturing process, sandwich local instabilities like, dimpling, wrinkling, shear crimpling, crushing.	4	20

	Stringer stiffened structures.Design of a sandwich plate. Design of stiffened plates.	4	
VI	Types of textile weaving, 3D composite and inflatable structures, stitched composites and nano-composites.	4	20
	Finite element analysis of composite beam, plate/ shell type composite structures.	3	20
	END SEMESTER EXAM		

01ME6116 Advanced Computer Graphics 3-0-0 3 2015 Course Objectives Objective of the programme is to make students to familiarize the mathematical concepts of advar computer graphics techniques. It is also aimed to make students to write simple programs and simulati using C++ programming or any software tools like MATLAB Syllabus Introduction Computer Graphics, Input, output devices, Interactive model, Geometric transformation Geometric transformation -II, Clipping, Hidden surface removal, Interactive Mesh displays- projec matrices, 3-D modeling – Space curves Expected Outcome Each student will become expert in writing programs for simulating engineering concepts. They also become expert in using MATLAB for their Thesis. This will further boost their aptitude in develop graphics for research and visualizing techniques useful for industry needs References 1. Mathematical elements of Computer Graphics-Rogers 2. Procedural element of computer Graphics-Rogers 3. Computer Graphics for Engineers- Vera B. Anand 4. Introduction to MATLAB-RadraPrathap 5Computer Graphics - A Programming Approach-Steven Harrington , McGraw Hill Publication. 6. Edward Angel: Interactive Computer Graphics A Top-Down Approach with OpenGL, 5th Edition, Pearson Education, 2008.	Course No.	Course Name	L-T-P	Credits	Year of Introduction
Objective of the programme is to make students to familiarize the mathematical concepts of advar computer graphics techniques. It is also aimed to make students to write simple programs and simulati using C++ programming or any software tools like MATLAB Syllabus Introduction Computer Graphics, Input, output devices, Interactive model, Geometric transformation Geometric transformation -II, Clipping, Hidden surface removal, Interactive Mesh displays- projec matrices, 3-D modeling – Space curves Expected Outcome Each student will become expert in writing programs for simulating engineering concepts. They also become expert in using MATLAB for their Thesis. This will further boost their aptitude in develop graphics for research and visualizing techniques useful for industry needs I. Mathematical elements of Computer Graphics-Rogers 2. Procedural element of computer Graphics-Rogers 3. Computer Graphics for Engineers- Vera B. Anand 4. Introduction to MATLAB-RadraPrathap 5. –Computer Graphics – A Programming Approach-Steven Harrington , McGraw Hill Publication. 6. Edward Angel: Interactive Computer Graphics A Top-Down Approach with OpenGL, 5th Edition,	01ME6116	-	3-0-0	3	2015
computer graphics techniques. It is also aimed to make students to write simple programs and simulati using C++ programming or any software tools like MATLAB Syllabus Introduction Computer Graphics, Input, output devices, Interactive model, Geometric transformation Geometric transformation -II, Clipping, Hidden surface removal, Interactive Mesh displays- projec matrices, 3-D modeling – Space curves Each student will become expert in writing programs for simulating engineering concepts. They also become expert in using MATLAB for their Thesis. This will further boost their aptitude in develop graphics for research and visualizing techniques useful for industry needs References 1. Mathematical elements of Computer Graphics-Rogers 2. Procedural element of computer Graphics-Rogers 3. Computer Graphics for Engineers- Vera B. Anand 4. Introduction to MATLAB-RadraPrathap 5. –Computer Graphics – A Programming Approach-Steven Harrington , McGraw Hill Publication. 6. Edward Angel: Interactive Computer Graphics A Top-Down Approach with OpenGL, 5th Edition,			Ĩ		
Introduction Computer Graphics, Input, output devices, Interactive model, Geometric transformation Geometric transformation -II, Clipping, Hidden surface removal, Interactive Mesh displays- project matrices, 3-D modeling – Space curves Expected Outcome Each student will become expert in writing programs for simulating engineering concepts. They also become expert in using MATLAB for their Thesis. This will further boost their aptitude in develop graphics for research and visualizing techniques useful for industry needs References 1. Mathematical elements of Computer Graphics-Rogers 2. Procedural element of computer Graphics-Rogers 3. Computer Graphics for Engineers- Vera B. Anand 4. Introduction to MATLAB-RadraPrathap 5. –Computer Graphics – A Programming Approach-Steven Harrington , McGraw Hill Publication. 6. Edward Angel: Interactive Computer Graphics A Top-Down Approach with OpenGL, 5th Edition,	computer graph	ics techniques. It is also aimed to	make stude		-
Geometric transformation -II, Clipping, Hidden surface removal, Interactive Mesh displays- project matrices, 3-D modeling – Space curves Expected Outcome Each student will become expert in writing programs for simulating engineering concepts. They also become expert in using MATLAB for their Thesis. This will further boost their aptitude in develop graphics for research and visualizing techniques useful for industry needs References 1. Mathematical elements of Computer Graphics-Rogers 2. Procedural element of computer Graphics-Rogers 3. Computer Graphics for Engineers- Vera B. Anand 4. Introduction to MATLAB-RadraPrathap 5. –Computer Graphics – A Programming Approach-Steven Harrington , McGraw Hill Publication. 6. Edward Angel: Interactive Computer Graphics A Top-Down Approach with OpenGL, 5th Edition,		S	Syllabus		
matrices, 3-D modeling – Space curves Expected Outcome Each student will become expert in writing programs for simulating engineering concepts. They also become expert in using MATLAB for their Thesis. This will further boost their aptitude in develop graphics for research and visualizing techniques useful for industry needs References Mathematical elements of Computer Graphics-Rogers Procedural element of computer Graphics-Rogers Computer Graphics for Engineers- Vera B. Anand Introduction to MATLAB-RadraPrathap - Computer Graphics – A Programming Approach-Steven Harrington , McGraw Hill Publication. Expected Outcome Each student will become expert in writing programs for simulating engineering concepts. They also become expert in using MATLAB for their Thesis. This will further boost their aptitude in develop graphics for research and visualizing techniques useful for industry needs References Mathematical elements of Computer Graphics-Rogers Computer Graphics for Engineers- Vera B. Anand Hand Introduction to MATLAB-RadraPrathap Computer Graphics – A Programming Approach-Steven Harrington , McGraw Hill Publication. Edward Angel: Interactive Computer Graphics A Top-Down Approach with OpenGL, 5th Edition,	Introduction Co	mputer Graphics, Input, output o	devices, Inte	ractive mod	el, Geometric transformation –I,
 Each student will become expert in writing programs for simulating engineering concepts. They also become expert in using MATLAB for their Thesis. This will further boost their aptitude in develop graphics for research and visualizing techniques useful for industry needs References Mathematical elements of Computer Graphics-Rogers Procedural element of computer Graphics-Rogers Computer Graphics for Engineers- Vera B. Anand Introduction to MATLAB-RadraPrathap –Computer Graphics – A Programming Approach-Steven Harrington , McGraw Hill Publication. Edward Angel: Interactive Computer Graphics A Top-Down Approach with OpenGL, 5th Edition, 			surface rer	noval, Intera	ctive Mesh displays- projection
 Mathematical elements of Computer Graphics-Rogers Procedural element of computer Graphics-Rogers Computer Graphics for Engineers- Vera B. Anand Introduction to MATLAB-RadraPrathap -Computer Graphics – A Programming Approach-Steven Harrington , McGraw Hill Publication. Edward Angel: Interactive Computer Graphics A Top-Down Approach with OpenGL, 5th Edition, 	become expert i	ll become expert in writing progr in using MATLAB for their Thes	rams for sim	nulating engi Il further boo	0 1 1
 Procedural element of computer Graphics-Rogers Computer Graphics for Engineers- Vera B. Anand Introduction to MATLAB-RadraPrathap –Computer Graphics – A Programming Approach-Steven Harrington , McGraw Hill Publication. Edward Angel: Interactive Computer Graphics A Top-Down Approach with OpenGL, 5th Edition, 		R	eferences		
	 Procedural ele Computer Gra Introduction t –Computer Gra Edward Ange 	ement of computer Graphics-Roge aphics for Engineers- Vera B. Ana to MATLAB-RadraPrathap raphics – A Programming Approa el: Interactive Computer Graphics	ers nd ach-Steven I		

	COURSE PLAN		
Module	Contents	Hours Allotted	% of Marks in End-Semester Examination
Ţ	Introduction to Computer Graphics; Input output devices; Clients and Servers; Display Lists; Display Lists and Modeling;	3	15
I	Programming Event Driven Input; Menus; Picking; A simple CAD program; Building Interactive Models; Animating Interactive Programs;	3	15
II	Geometric Transformations Scalars, Points, and Vectors; Three- dimensional Primitives; Coordinate Systems and Frames;	4	15
11	Modeling a Colored Cube; Affine Transformations; Rotation, Translation and Scaling;	3	15
	FIRST INTERNAL EXAM		
ш	Geometric Objects and Transformations; Transformation in Homogeneous Coordinates; Concatenation of Transformations;	4	15
	OpenGL Transformation Matrices; Interfaces to three dimensional applications;	3	
IV	Clipping; Line-segment clipping; Polygon clipping; Clipping of other primitives; Clipping in three dimensions;	3	15
	I Rasterization; Bresenham's algorithm; Polygon Rasterization; Hidden- surface removal; Antialiasing;	3	
	SECOND INTERNAL EXAM		
v	Interactive Mesh Displays; Parallel-projection matrices;	4	20
	Perspective-projection matrices; Projections and Shadows.	4	

VI	3D modeling techniques (Wire frame, solid modeling and surface modeling). C++ programming or Matlab coding to represent simple 3D geometric models.	4	20
	Mathematical formulation of space curves.(Cubic spline, and Bezier curves) C++ programming or Matlab coding to generate space curves.	4	20
	END SEMESTER EXAM		

Course No.	Course Name	L-T-P	Credits	Year of Introduction
01ME6118	Condition Monitoring & Maintenance Engineering	3-0-0	3	2015
	Course	Objectives		
• To fami	duce Various predictive maintena liarize the Destructive and Nonde s and remedial of condition monite	structive tes	sting techniqu	
	Sy	llabus		
Machinery Vib	Machine Condition Monitoring a ration and Rotor dynamics, Vibrat			
Instrumentation	n, Condition monitoring Techniqu	ies, Machine	e Tool Conditi	on Monitoring
Instrumentation		es, Machine		on Monitoring
		ed Outcome		on Monitoring
□□Students m	Expecte	ed Outcome	echniques.	0
□□Students m □□Students m	Expectent to apply predictive matrix	ed Outcome	echniques.	0
□□Students m □□Students m Text Books: 1. Machine	Expectent to apply predictive matrix	ed Outcome hintenance te ance of indu es & Practic	echniques. strial machine es, Amiya R.	ery in plants. Mohanty, CRC Press, 2015.
□□Students m □□Students m Text Books: 1. Machine	Expectent nust be able to apply predictive manust be able to handle the maintenation wery Condition Monitoring, Principle	ed Outcome hintenance te ance of indu es & Practic	echniques. strial machine es, Amiya R.	ery in plants. Mohanty, CRC Press, 2015.
□□Students m □□Students m Text Books: 1. Machine 2. Vibratio References :	Expectent nust be able to apply predictive manust be able to handle the maintenation wery Condition Monitoring, Principle	ed Outcome aintenance to ance of indu es & Practic obert Bond F	echniques. strial machine ees, Amiya R. Randall, John	ery in plants. Mohanty, CRC Press, 2015
□□Students m □□Students m Text Books: 1. Machine 2. Vibratio References : 1. Mechani 2. First Co	Expectent nust be able to apply predictive manust be able to handle the maintenate ery Condition Monitoring, Principle on Based Condition Monitoring, Ro	ed Outcome aintenance to ance of indu es & Practic obert Bond F onitoring- R ae process In	echniques. strial machine ees, Amiya R. Randall, John .A.Collacott idustry, Manc	ery in plants. Mohanty, CRC Press, 2015 Wiley Publication-2010 hester, Edited by M.J Neale

	COURSE PLAN		
Module	Contents	Hours Allotted	% of Marks in End-Semester Examination
I	Introduction to condition monitoring and fault diagnosis –Machinery failure-	3	15
	Type and cause – Frequency of failure- Bath-tub curve- Basic Maintenance strategies	3	
п	Characteristics of Vibrating systems- Vibration of continuous systems- Mode shape and operational deflection shapes-	4	
	Experimental modal analysis-Simple rotor disc systems and critical speed-Condition monitoring of large rotor systems	3	15
	FIRST INTERNAL EXAM		
III	Vibration monitoring- Misalignment and eccentricity detection- Bearing fault- Gear fault-Cavitations induced vibration in fluid machines -	4	15
	Noise measurement : Decibel scale – relationship between pressure, intensity and power – Noise source	3	15
IV	Introduction- Classification of signals-Frequency domain- Signal Analysis-Fourier series-Discrete Fourier Transforms – Fundamentals of FFT,.	3	15
	Auto power spectrum – Frequency Response Spectrum – Basic Measuring Equipments for Vibration, Force, Rotational speed	3	
	SECOND INTERNAL EXAM		<u> </u>

v	Introduction- Radiography- Ultrasound Testing- Thermography-	4	20		
	Wear Debris Analysis- Eddy current Testing – Acoustic Emission-	4			
771	Introduction- Case studies of condition monitoring in Process & Manufacturing industry.	4			
VI	Bend Pulley Failure Analysis, Vibration measurement on a multi-stage gearbox drive set.	4	20		
	END SEMESTER EXAM				

Course	No.	Course Name	L-T-P	Credits	Year of Introduction
01ME6	110	Fracture Mechanics	3-0-0	3	2015
	-	the students to gain knowledge		nechanics, to u	
existing of	0	w the behavior of existing crac	ks and ensure	Tall-sale desig	n using materials with
		S	yllabus		
Basic str	ess analy	sis and mechanical properties			
Linear E	lastic Fra	acture Mechanics (LEFM)			
LEFM a	pproach	to crack-tip plasticity			
Elastic-P	lastic Fr	acture Mechanics (EPFM)			
Fatigue of	crack gro	owth			
Fracture	toughne	ss testing			
		Expect	ed Outcome	e	
the cours cracks for	will und se studen or differe	lerstand how the theory of frac ts will know about how to ens nt load conditions.			•
Text Boo		en, J. Zuidema and R. J. H. Wa	nhill <i>Fract</i> i	ure Mechanics	x Taylor & Francis 2 nd ed
	002.				,,
). Broek)ordrech	, Elementary Engineering Frac t, 1986.	ture Mechani	ics, Kluwer A	cademic Publishers,
3. T		erson, Fracture Mechanics Fu	undamentals	and Application	ons, CRC PRESS, 3 rd ed.,
	rashant 1 009.	Kumar, Elements of Fracture I	Mechanics, Ta	ata McGraw I	Hill, New Delhi, India,
		Simha, Fracture Mechanics for mited, 2001	Modern Eng	ineering Desi	gn, Universities Press
Reference	e books	:			
1. E	E.E. Gdo	wan, Fracture Mechanism: An	Introduction	, Springer, 20	05.
		tal Hand Book, Vol 12, Fracto	• • •		
		Mechanics and Mechanisms of Mechanical Metallurgy,McGr			n, ASM, 2004.
4. C	J.Dieter,	NIACHANICAL MIATALINGAN N/ICC	'aw H1II ∃'' e	a 2013	

٦

F

	COURSE PLAN				
Module	Contents	Hours Allotted	% of Marks in End-Semester Examination		
Ι	Basic stress analysis and mechanical properties: Elasticity, General 3-D relations, Plane stress and plane strain.	3	45		
	Mohr's circle-principal stresses, Yield in materials, Tresca and Von Mises criteria, Ideal and actual strength of materials. Typical stress/strain curves for different classes of materials.	3	15		
II	Significance of fracture mechanics – Linear elastic fracture mechanics (LEFM)-Griffith energy balance approach - Irwin's modification to the Griffith theory - instability and R curve-Stress analysis of cracks- fracture toughness - modes I, II & III - mixed mode problems-	4			
	Expressions for stresses and strains in the crack tip region - finite specimen width - superposition of stress intensity factors (SIF) – SIF of centre cracked plate, single edge notched plate, and embedded elliptical cracks R-curve concept-thickness effect	3	15		
	FIRST INTERNAL EXAM				
ш	Crack tip plasticity: Irwin plastic zone size - Dugdale approach - shape of plastic zone - state of stress in the crack tip region - influence of stress state on fracture behavior-	4			
	Elastic plastic fracture mechanics (EPFM): Development of EPFM - J- integral – Definition-Path independence-	3			
IV	Application to engineering problems-crack opening displacement (COD) approach - COD design curve - relation between J and COD - tearing modulus concept	3			
	Fatigue crack growth: Mechanisms of fracture and crack growth- Description of fatigue crack growth using stress intensity factor	3			
	SECOND INTERNAL EXAM				
v	Effects of stress ratio - crack closure - prediction of fatigue crack growth under constant amplitude and variable amplitude loading	4	20		

	Fatigue Crack Initiation Basic Aspects of Dynamic Crack Growth-Basic Principles of Crack Arrest -Fracture Mechanics Analysis of fast fracture and Crack Arrest.	4			
VI	K_{IC} test technique, various test specimens, load-displacement test, J_{IC} testing, Test methods to determine G_{IC} and G_{IIC} ,	4	20		
	Determination of CTOD/COD, Time-to-failure (TTF) tests - crack growth rate testing - practical significance of sustained load fracture testing	4	20		
	END SEMESTER EXAM				

	Course Name	L-T-P	Credits	Year of Introduction
01ME6122	Optimization Technique for Engineering	3-0-0	3	2015
	Course	Objectives	i	
algorith • Unders	late the given problem in a mathema nm. tand the techniques and application the appropriate optimization metho	s of engineer	ring optimizat	ion.
	Syl	llabus		
Linear Program Unconstrained Non-Linear Pr	nization Techniques, Review of Line nming (LP), Non-Linear Programmir	ng (NLP) timization	-	
	Expected	d Outcome	2	
	1			
□□ Apprecia	te the application of optimization pr	oblems in v	aried disciplin	es.
	-		-	es.
□□Model a r	te the application of optimization pr	ptimization p	roblem.	
□□Model a r	te the application of optimization pr eal-world decision problem as an op critical evaluation and interpretatio	ptimization p	roblem.	
 Model a r Perform a 1. H.A. Taha, 2. S.S. Rao, En 	te the application of optimization pr eal-world decision problem as an op critical evaluation and interpretatio Refe Operations Research: An Introduction ngineering Optimization: Theory an andu, T.R. Chandrupatla, Optimizat	ptimization p on of analysis erences on, Pearson d Practice, N	oroblem. and optimiza Education Jew Age Inter	tion results.
 Model a r Perform a 1. H.A. Taha, 2. S.S. Rao, Er 3. A.D. Belege Pearson Educa 	te the application of optimization pr eal-world decision problem as an op critical evaluation and interpretatio Refe Operations Research: An Introduction ngineering Optimization: Theory an andu, T.R. Chandrupatla, Optimizat	ptimization p on of analysis erences on, Pearson d Practice, N ion Concept	roblem. s and optimiza Education Jew Age Inter s and Applica	tion results. national Publishers. tions in Engineering,
 Model a r Perform a 1. H.A. Taha, S.S. Rao, Er A.D. Belegu Pearson Educa H. M. Wagu 	te the application of optimization pr eal-world decision problem as an op critical evaluation and interpretation Refe Operations Research: An Introduction ngineering Optimization: Theory an undu, T.R. Chandrupatla, Optimizat tion.	ptimization p on of analysis erences on, Pearson d Practice, N ion Concept ch, Prentice-	oroblem. and optimiza Education New Age Inter s and Applicat • Hall of India	tion results. national Publishers. tions in Engineering,
 Model a r Perform a 1. H.A. Taha, 2. S.S. Rao, En 3. A.D. Belegu Pearson Educa 4. H. M. Wagn 5. Gross and H 	te the application of optimization pr eal-world decision problem as an op <u>critical evaluation and interpretation</u> Refe Operations Research: An Introduction ngineering Optimization: Theory an undu, T.R. Chandrupatla, Optimizat tion.	ptimization p on of analysis erences on, Pearson T d Practice, N ion Concept ch, Prentice- eory, John W	oroblem. and optimization Education New Age Inter s and Application Hall of India Viley & Sons	tion results. national Publishers. tions in Engineering, Pvt. Ltd.

	COURSE PLAN		
Module	Contents	Hours Allotted	% of Marks in End-Semester Examination
Ι	Introduction:, Formulation of optimization problems, examples		15
	Classification of optimization problems, Properties of objective function	4	15
	Maxima, minima and points of inflection, Concavity and convexity of		
II	one and two variable functions, Taylor's theorem: single variable and multi variable function	4	15
	Hessian matrix, Unconstrained Optimization of multi variable functions, Lagrange multiplier method	3	15
	FIRST INTERNAL EXAM		
	Single variable optimization: optimality criteria, Exhaustive search and dichotomous search	3	
III	Region elimination methods- Fibonacci search and Golden section search, Gradient based methods- Newton Raphson method, Secant method	4	15
IV	Multivariable optimization: optimality criteria, Unidirectional search, Direct search method-Simplex search method, Powell's conjugate direction method	4	15
	Gradient based methods- Method of steepest ascent/ steepest descent, conjugate gradient method	3	
	SECOND INTERNAL EXAM		
v	Constrained optimization: Kuhn Tucker conditions, Transformation method- Penalty function method	3	20
	Linearized search-Frank-Wolfe method	3	
VI	Geometric programming; Dynamic programming; Integer programming;	4	20
	Goal programming. Stochastic programming	4	20

	END SEN	IESTER E	XAM	
Course No.	Course Name	L-T-P	Credits	Year of Introduction
01ME6124	Acoustics And Noise Control	3-0-0	3	2015
• To gain applica	knowledge of the principles of aco	Objectives ustics and r		n various engineering
Noise measure Environmenta Acoustic mate	mission through different media			
• The ba filters,	Expected letion of the course, the students wi sic principles of acoustics, noise co mufflers, resonators etc and the not ium design etc	ontrol and th	o understand: the design of ac	
2. Berene	r and frey – Fundamentals of Acous k, L. L. – Noise and Vibration Cor Industrial noise and vibration ks :			
 Petruso Thuma R. D. I 	C. K. – Handbook of Noise Contro owicz and Longmore – Noise and V nn and Miller- Secrets of noise con Ford – Introduction to Acoustics as P. Reynolds – Engineering Princ	vibration co ntrol		istrialists

	COURSE PLAN		
Module	Contents	Hours Allotted	% of Marks in End-Semester Examination
	Introduction – Basic acoustic principles- acoustic terminology and definitions – Plane wave- harmonic solution.	3	
Ι	Velocity of sound in inviscid fluids – relationship between wavelength- particle velocity, acceleration – Energy density – acoustic intensity – reference standards	4	
II	Transmission through one, two and three media – Transmission through pipes – branched and unbranched – resonators – Transmission loss- reflection at plane surface	3	
	spherical waves – radiation – simple source – hemispherical source- radiating piston – pressure intensity distribution – Beam width and directivity index – sound absorbing materials	3	15
	FIRST INTERNAL EXAM		
III	Noise measurement : Decibel scale – relationship between pressure, intensity and power – sound level meter, noise analyzer and graphic level recorder –	4	
	Measurement in anechoic and reverberation chambers - Standing waves- standing wave apparatus.	3	
IV	Environmental noise control : Human reaction to sound – definitions of speech interference level, perceived noise level, phon and soneetc, hearing loss	4	
	principles of noise control, control at source, during transmission and at receiver- protection of receiver	2	
	SECOND INTERNAL EXAM		
V	Acoustic insulation – acoustic materials – acoustic filter and mufflers – plenum chamber – noise criteria and standards – noise and number index guide lines for designing quieter equipments-	4	20
	Methods of controlling noise using baffles, coverings, perforations etc. transmission through structures – control - vibration damping and other methods	5	
VI	Principles of noise control in machinery such as pumps, rotating machines, reciprocating machines etc	4	20
	Introduction sound design requirements of an auditorium	3	20
	END SEMESTER EXAM		

Course No.	Course Name	L-T-P	Credits	Year of Introduction
01ME6126	Advanced Finite Element Method	3-0-0	3	2015
	Course	Objectives		
the non nonline element ordinary and she • Nur ther • The • The • How mat	jective in this course is to summarize linear analysis of static and dynamic ar problems is discussed. Students to methods and how to implement and y and partial differential equations. II) elements can be formulated, integ- nerical difficulties, such as shear loo n. fundamental concepts of using FEA e fundamental concepts of the theory w different plasticity models can erials.	ic problems. will learn a d apply these How particu grated and us cking, inhere A to model b of plasticity be used to	The modelin advanced topi e techniques to lar continuum sed to solve el nt in some ele uckling of stru 7. approximate	g of geometric and material ics and techniques in finite o solve nonlinear systems of a and structural (beam, plate astic problems. ments and how to overcome actures.
	Svl	labus		
Total Lagrangi from the princi Updated and T Formulation of Linearization a	Nonlinear Analysis, nonlinear dift an and updated Lagrangian formu- ples of continuum mechanics. total Lagrangian Formulation. Finite Element Matrices for Bean and Directional derivatives. Solution te Element Equations in Static Ana	ferential equalation for I and Plate of Nonlin	ncremental G elements.	·

Expected Outcome

 \Box \Box \Box The student may be able to model nonlinear problems with

- Static and dynamic problems with Geometric and material nonlinearities
- Be aware of the limitations of the nonlinear FEM to avoid GIGO (Garbage In Garbage Out)
- Gain an insight into programming nonlinear FE using MATLAB, C++ etc.
- Efficient and effective use of commercial FE software like ANSYS, NASTRAN, ABAQUS and to understand the solution control options like load step, substep, time step, restart, stability of solution at bifurcation etc.

Reference books :

- 1. Finite element procedures K. J. Bathe, PHI.
- 2. An Introduction to Nonlinear Finite Element Analysis, J.N Reddy, Oxford University Press, 2005.
- 3. Nonlinear Finite elements for continua and structures, Ted Belytschko, Wiley 2001.
- 4. Continuum Mechanics and plasticity, Han Chin Wu, CRC, 2001.
- 5. An introduction to continuum mechanics with applications, J.N Reddy, Cambridge university Press, 2008.
- 6. Nonlinear Finite Element Analysis of Solids and Structures: Volume 1 essentials M.A. Crisfield, Wiley.
- 7. Nonlinear Finite Element Analysis of Solids and Structures: Volume 2 Advanced Topics M.A. Crisfield, Wiley.
- 8. Introduction to Nonlinear Finite Element Analysis, , Nam-Ho Kim, Spinger
- 9. Advanced Topics in Finite Element Analysis of Structures: With Mathematica and MATLAB Computations, <u>M. Asghar Bhatti</u>, Wiley
- 10. Nonlinear Finite Element Methods, Peter Wriggers, Springer
- 11. Structural Analysis with the Finite Element Method. Linear Statics Volume 2: Beams, Plates and Shells, Eugenio Oñate, Springer.

	COURSE PLAN		
Module	Contents	Hours Allotted	% of Marks in End-Semester Examination
Ι	Introduction to Nonlinear Analysis, nonlinear differential equations,	3	
	Basic Considerations in Nonlinear Analysis Lagrangian Continuum Mechanics Variables for General Nonlinear Analysis, Virtual work principle and variational methods,	3	. 15
II	Continuum Mechanics Variables for General Nonlinear Analysis– TotalLagrangian formulation for Incremental General Nonlinear Analysis from the principles of continuum mechanics.	4	15
	Formulation of Finite Element Matrices from the principles of continuum mechanics: Two-Noded Truss Element	3	15
	FIRST INTERNAL EXAM	I	
	Updated Lagrangian formulation for Incremental General Nonlinear Analysis from the principles of continuum mechanics.	3	
III	Formulation of Finite Element Matrices from the principles of continuum mechanics: Two-Noded Truss ElementFormulation of the Nonlinear Finite Element Equations.	3	
	Two and Three-Dimensional Solid Elements; Plane Stress, Plane Strain, and Axisymmetric Conditions, Constitutive relations	4	
IV	Formulation of Finite Element Matrices for Beam and Plate elements, Kirchhoff's and Mindlin's beam/plate theory, nodal coordinate system, surface normal, transformation matrices.	3	
	SECOND INTERNAL EXAM	_	
v	Linearization and Directional derivatives, Directional derivatives of different strain measures.	4	20
	Linearization of weak form in terms of second PiolaKirchoff stresses and the Green Lagrange strains, Solution of Nonlinear Dynamic Response,	4	
VI	Solution of the Nonlinear Finite Element Equations in Static Analysis, Newton Raphson,	4	20
	Modified Newton Raphson, Secant method, Arc length method, Force and displacement control, residual calculation, convergence criterion.	4	20
	END SEMESTER EXAM	I	<u> </u>

Course No.	Course Name	L-T-P	Credits	Year of Introduction	
01ME6128	Robotics	3-0-0	3	2015	
• To mak applicat	Course of the basic concepts, parts of the the student familiar with the variations in robots and programming of uss about the various applications	ious drive sy	ypes of robots ystems for rol	bot, sensors and their	
10 4150		labus			
Robot kinemat Robot drives an Robot end effe Path planning a	ed classification of robots ics and dynamics and power transmission systems ctors & programming ge- Software- Industrial application	n			
	Expected	d Outcome			
The StudThe stud	end of the course the students will: dent must be able to design automation dent could understand the principle e vision robot kinematics and prog	ic manufactu e behind roł			
	Refe	erences			
 Deb S. R. and Deb S., "Robotics Technology and Flexible Automation", Tata McGraw Hill Education Pvt. Ltd, 2010. John J.Craig, "Introduction to Robotics", Pearson, 2009. Mikell P. Groover et. al., "Industrial Robots - Technology, Programming and Applications", McGraw Hill, New York, 2008. Richard D Klafter, Thomas A Chmielewski, Michael Negin, "Robotics Engineering – An Integrated Approach", Eastern Economy Edition, Prentice Hall of India Pvt. Ltd., 2006. Fu K S, Gonzalez R C, Lee C.S.G, "Robotics : Control, Sensing, Vision and Intelligence", McGraw Hill, 1987 					

	COURSE PLAN				
Module	Contents	Hours Allotted	% of Marks in End-Semester Examination		
Ι	Specifications of Robots- Classifications of robots – Work envelope	4	15		
	Flexible automation versus Robotic technology – Applications of Robots	3	15		
II	ROBOT KINEMATICS AND DYNAMICS : Positions, Orientations and				
11	frames, Mappings: Changing descriptions from frame to frame, Operators: Translations, Rotations and Transformations -	4	45		
	Transformation Arithmetic - D-H Representation - Forward and inverse Kinematics Of Six Degree of Freedom Robot Arm – Robot Arm dynamics	2	- 15		
	FIRST INTERNAL EXAM				
	ROBOT DRIVES AND POWER TRANSMISSION SYSTEMS: Robot drive mechanisms, hydraulic – electric – servomotor- stepper motor	3			
III	Pneumatic drives, Mechanical transmission method - Gear transmission, Belt drives, cables, Roller chains, Link - Rod systems	2	15		
	Rotary-to-Rotary motion conversion, Rotary-to-Linear motion conversion, Rack and Pinion drives, Lead screws, Ball Bearing screws	2			
IV	ROBOT END EFFECTORS : Classification of End effectors – Tools as end effectors.	3	- 15		
10	Drive system for grippers-Mechanicaladhesive-vacuum-magnetic- grippers. Hooks&scoops. Gripper force analysis and gripper design. Active and passive grippers.	3			
	SECOND INTERNAL EXAM				
V	Drive system for grippers-Mechanical adhesive-vacuum-magnetic- grippers. Hooks &scoops.	4	20		
	Gripper force analysis and gripper design. Active and passive grippers.	4			
VI	Robot languagescomputer control and Robot software	4	- 20		
	Industrial Application of robots	4	- 20		
END SEMESTER EXAM					

Course No.	Course Name	L-T-P	Credits	Year of Introduction		
01ME6192	MINI PROJECT	0-0-4	2	2015		
To make st	Course Objectives To make students					
Desig	Design and develop a system or application in the area of their specialization.					
		Approach				
The student shall present two seminars and submit a report. The first seminar shall highlight the topic, objectives, methodology, design and expected results. The second seminar is the presentation of the work / hardwareimplementation.						
Expected Outcome						
Upon successful completion of the miniproject, the student should be able to1. Identify and solve various problems associated with designing and implementing a system or application.2. Test the designed system or application.						

	01ME6194	L-T-P: 0-0-2
	Modelling & Analysis Lab	Credits : 1
SL. NO	Experiment	Main equipments/Software required
1	3D Modelling of Universal Coupling	Any Three Modelling Package
2	3D modeling of Clutch Assembly	Any Three Modelling Package
3	3D Modelling of a 4 speed Gear box	Any Three Modelling Package
4	Modal analysis of a beam – by using impact hammer, and by using shaker	Accelerometers, oscilloscope, charge amplifier, impact hammer, electrodynamic exciter, beam and its fixer etc.
5	Modal analysis of plate – by using impact hammer, and by using shaker	Accelerometers, oscilloscope, charge amplifier, impact hammer, electrodynamic exciter, plate and its fixer etc.
6	Modal analysis of beam by modeling in CAD software and exporting the same to finite element analysis software.	Any FEM Software package, (ANSYS/NASTRAN/ABACUS/ADINA/COMSOL) Any 3D modeling CAD package (Pro-E, Inventor, Solidworks, Catia)
7	Modal analysis of plate using to finite element analysis software.	Any FEM Software package, (ANSYS/NASTRAN/ABACUS/ADINA/COMSOL) Any 3D modeling CAD package (Pro-E, Inventor, Solidworks, Catia)
8	Modal analysis of beam using computer program code	Software – MATLAB/FORTRAN/C++
9	Modal analysis of plate using computer program code	Software – MATLAB/FORTRAN/C++
10	For a SDOF system measure the FRF and identify the mass, stiffness and damping using the peak picking method	Spring mass system, accelerometer, FFT analyzer, exciter,
11	Material characterization of viscoelastic, hyper elastic and biological membrane material	Bi-axial testing machine
12	Fatigue fracture study of composites	Fatigue fracture testing machine
13	To get the spatial distribution of SPL of a Noise Generator	Signal generator, amplifier, speaker, sound level meter
14	To study the frequency distribution of a signal generated and check the frequency content of human voice and compare it for two persons	Signal generator, oscilloscope, speaker and microphone
15	To determine natural frequencies corresponding mode shapes of the disc and mode shapes	Accelerometers, oscilloscope, charge amplifier, electrodynamics exciter, disk etc.

SEMESTER - III

Syllabus and Course Plan

Course No.	Course Name	L-T-P	Credits	Year of Introduction		
01ME7111	Advanced Numerical Methods	3-0-0	3	2015		
Course Objectives						
-	vide students with a solid foun ing them to solve mathematica			-		
• To equi	p students with good scientifie	c and math	ematical prin	ciples to model and solve		
	ering problems met with in eng g designs in view of the purpos					
	c					
		Syllabus				
	gebraic and transcendental ec nultaneous equations-Direct	_	methods			
Interpolation	& Curve Fitting	a mareer	inctious			
	fferentiation & Integration dinary Differential Equations	5				
	rtial differential Equations-					
	Expos	ted Outcor	mo			
By the end of	-		lie			
	ates will have received trainir	•	0	0 0 I		
	dy of theory and problem-sol ates will have their minds dev	-	-			
problei	ns faced by industry and soci	iety, and fo	orge out viab	le solutions there to.		
Gradua References:	ates will demonstrate knowle	dge of prof	essional and	l ethical responsibilities.		
	nethods for Scientific and Fre	oineerino (omputation	– Jain M K		
 Numerical methods for Scientific and Engineering Computation – Jain M.K., Elementary Numerical Analysis – Conte and Carl DeBoor 						
3. Introduction to Numerical Analysis – Gupta A and Bose S C						
 Introduction to Numerical Analysis – Hilderbrand FB Introduction toNumerical Analysis – Fjorberg C E 						
6. An Introduction toNumerical Analysis – Kendall E Atkinson						
7. Statistics – Murrey R Spiegel						
		on D. Coort	ana al-			
8. Numerical	Murrey R Spiegel Mathematical Analysis – Jam ımerical Analysis – C F Geral		0			

COURSE PLAN					
Module	Contents	Hours Allotted	% of Marks in End-Semester Examination		
Ι	Solution of algebraic and transcendental equations- Review and comparison of various iterative methods, convergence	4	15		
	Generalised Newton-Raphson method for multiple roots – Higher order methods – Newton's method for non-linear systems.	3			
II	Solution of simultaneous equations-Direct & indirect methods- Gauss elimination and Gauss Jordan methods – ill conditioning – pivoting –	3	15		
	Jacobi, Gauss-Seidel and Relaxation methods-convergence-Eigen value problems-Vector iteration method	3	15		
	FIRST INTERNAL EXAM				
	Interpolation & Curve Fitting-Newton's Divided difference, Lagrange, Aitken, Hermite and Spline techniques – Inverse interpolation -Double interpolation-Trigonometric interpolation.	4			
III	Curve fitting – method of least squares – non-linear relationships – Correlation and Regression – Linear Correlation – Measures of correlation – Standard error of estimate – Coefficient of correlation – Multiple linear regressions.	3			
IV	Numerical differentiation – Derivative using forward, backward and central difference scheme, Maxima and minima of tabulated functions.	4			
	Numerical integration-Newton-Cote's Integration formula-Gauss quadrature- Simson rule, Double integration. Error estimates-	2			
	SECOND INTERNAL EXAM		1		
v	Solution of ordinary differential equations-Single step & multi step methods-stability of solution –	4	20		
	Simultaneous first order differential equations- higher order different equations. Numerical solution of integral equations.	3			
VI	Partial differential equations – classification – Laplace equation, ID wave equation, ID heat equation – Finite difference methods – Relaxation methods.	4	20		

	Stability and convergence of solution. FEM for ordinary Differential equation and partial differential equations.	5				
END SEMESTER EXAM						

Course No.	Course Name	L-T-P	Credits	Year of Introduction		
01ME7113	Advanced Non-Destructive Evaluation	3-0-0	3	2015		
Course Objectives						
The aim of the course is to familiarize the various nondestructive evaluation techniques						
	ification of technique suitable f			-		
	surface NDT methods	<u> </u>				
Eddy current						
Thermograph						
Radiography	5					
Ultrasonic NDT						
Advance NDE methods						
Expected Outcome						

At the end of the course the students will:

- Understand various surface and volumetric non destructive evaluation techniques and its sensitivity towards various types of defects
- Gain knowledge about various advanced NDE techniques
- Understand the principle of ultrasonic NDE and mechanics of elastic wave propagation.

Text Books :

- 1. P.J. Shull,Nondestructive evaluation, theory techniques and application, Marcell Decker Inc, New York 2002
- 2. D.E. Bray and R.K.Stanley, Nondestructive evaluation, a tool in design manufacturing and service, CRC Press, 1996
- 3. Paul E. Mix,Introduction to nondestructive testing- a training guide, Wiley International, USA, 2005

Reference books :

- 1. NDT Handbooks Volume 1-17, ASNT Press, OH USA
- 2. Charles J. Hellier, Handbook of nondestructive evaluation, Mc Graw Hill
- 3. Nondestructive evaluation and quality control, ASM Handbook, ASM International

COURSE PLAN						
Module	Contents	Hours Allotted	% of Marks in End-Semester Examination			
Ι	Introduction to nondestructive evaluation, Visual inspection, Liquid Penetrant Testing – rinciples, types and properties of liquid penetrants, developers, advantages and limitations of various methods.	4	15			
	Testing Procedure, Interpretation of results. Magnetic Particle Testing- Theory of magnetism, inspection materials Magnetisation methods, Interpretation and evaluation of test indications, Principles and methods of demagnetization, Residual magnetism.	3				
II	Electro-Magnetic Methods - Maxell's Equations, Magnetic Flux Leakage.	3	15			
	Eddy Current, Low Frequency Eddy Current, Remote Field Eddy Current, Pulsed Eddy Current.	3	15			
	FIRST INTERNAL EXAM					
III	Principles of Thermography, Contact and non contact inspection methods - Heat sensitive paints - Heat sensitive papers - thermally quenched phosphors liquid crystals - techniques forapplying liquid crystals - calibration and sensitivity -	4				
	Other temperature sensitive coatings -non contact thermographic inspection - Advantages and limitation -infrared radiation and infrared detectors, Instrumentations and methods, applications.	3				
IV	Radiographic Methods - Principles of X-ray NDT, Equipment, Calibration, Image Collection, Quantification, and Interpretation. High power sources and high quality films.	4				
	Digital Radiography, Introduction to Tomography and Laminography.	3				
	SECOND INTERNAL EXAM					
v	Nature of sound waves, wave propagation - modes of sound wave generation - longitudinal waves, transverse waves, surface waves, lamb waves - Velocity, frequency and wavelength of ultrasonic waves	3	20			

	Ultrasonic pressure, intensity and impedance - Attenuation of ultrasonic waves - reflection, refraction and mode convection - Snell's law and critical angles - Fressnel and Faunhofer effects - ultrasonic beam split.	3	
	Various methods of ultrasonic wave generation - Piezoelectric effect, Piezo electric materials and their properties, contact testing, Pulse echo method and through transmission method, immersion testing, couplants - Data presentation A, B and C scan displays	3	
	Formulation of elastic wave equation, Elastic wave propagation in isotropic and anisotropic materials, Cristoffel equation.	4	
VI	Overview of advance ultrasonic techniques-Phased array technique, Time of flight diffraction technique, Ultrasonic guided waves, EMAT, laser ultrasonics, nonlinear ultrasonics, acoustic emission technique.	4	20
	END SEMESTER EXAM		

Course No.	Course Name	L-T-P	Credits	Year of Introduction			
01ME7115	Advanced Design Synthesis	3-0-0	3	2015			
 Course Objectives To give an overview of the techniques used in Mechanical Engineering for the analysis and synthesis of Mechanisms. To familiarize the graphical and analytical techniques commonly used in the synthesis of mechanisms. To provide sufficient theoretical background to understand contemporary mechanism design techniques. To develop skills for applying these theories in practice. Identify mechanisms by type of motion (Planar, Spatial etc.) Select the best type of mechanism for a specific application and apply the fundamental synthesis technique to properly dimension the mechanism 							
	Syl	labus					
Inflection circle Two point synt Synthesis with Synthesis using	Overlay method, Coupler curves e, Transmission angle. hesis and Three point synthesis of Four accuracy points. g Displacement Equations. g Complex numbers, Spatial mecha		15.				
	Expected	d Outcome	2				
Create Do Kin	he course, the students will be able and analyses a great number of typ ematic analysis of common mecha he analysis and synthesis methods	es of mecha nisms used	in machinery	<i>.</i>			
References:							
	1. Kinematic synthesis of Linkages by Richard.S.Hartenberg, Jacques Denavit, McGraw Hill book company.						
2. Kinematics	and linkage design by Allen.S.Hal	1. Prentice H	Hall of India,	Ltd.			
3. Theory of M	3. Theory of Mechanisms and Machines by Shigley, McGraw Hill International Edition.						

4. Dynamics of Machinery by A.R.Holowenko.

	COURSE PLAN					
Module	Contents	Hours Allotted	% of Marks in End-Semester Examination			
Ι	Floating Link, Special methods of Velocity and Acceleration Analysis using auxiliary points.	4	15			
	Overlay method for conditioned crank mechanisms, coupler curves. Roberts – chebyshev theorem	3				
II	Inflection circle, Euler Savery equation, Hartman construction, Bobillier construction,	3				
	Synthesis using Optimum transmission angle	3	15			
	FIRST INTERNAL EXAM					
III	Geometric methods of synthesis with three accuracy points:- poles of four bar linkages, Relative poles of four bar linkages, Function generators, poles of slider crank mechanisms, Relative poles of slider crank mechanisms, Rectilinear recorder mechanisms.	4				
	Synthesis of slider crank mechanism with three accuracy points.	3				
IV	Geometric methods of synthesis with four accuracy points:- pole triangles, center point curves, Circle point curves, Construction of circle points, Cardinal points, opposite poles, Pole quadrilaterals,	4				
	Function Generators, Synthesis of slider crank mechanism with four accuracy points.	2				
	SECOND INTERNAL EXAM		·			
v	Algebraic methods of synthesis using displacement equations: - Crank and follower synthesis- three accuracy points,	4	20			
	Crank and follower synthesis- angular velocities and accelerations.	3				
VI	Rectilinear mechanisms, Algebraic methods of synthesis using complex numbers.Spatial motion and spatial linkages	4	20			
	Types of spatial mechanisms, Single loop linkage and multiple loop linkages. Simple mechanisms in Robots.	5	-			
	END SEMESTER EXAM					

Course No.	Course Name	L-T-P	Credits	Year of Introduction
01ME7117	Mechatronics System Design	3-0-0	3	2015

Course Objectives

To equip students with state of the art techniques and skills in the fields of automation and robotics. There is a huge demand from industries for qualified professionals in the areas of automation. MEMS is an emerging area where future developments are focused. Till now in India there was no manpower shortage But in future we will lack youth employees to take tedious physical jobs. The only answer is automation. So it is the need of the hour to make students aware of the latest trends in sensors, actuators, pneumatic and hydraulic systems, PLC etc.

Syllabus

Introduction to mechatronics sensors and transducers Automation system design Modeling and simulation of mechatronics systems Microprocessors & microcontrollers Real time interfacing Robotic vision and case studies

Expected Outcome

On successful completion of this course a student will be able to design and develop complicated pneumatic and hydraulic circuits to automate various equipments. They will be capable to apply their skills to develop new automatic machines. They will get a thorough knowledge about latest cutting edge technologies like MEMS, Robotics etc. They will get knowledge about microprocessors and microcontrollers which are an essential part of modern automatic devices . They will be capable to interface various types of sensors and actuators with computers by using data acquisition cards.

Reference books :

1. W. Bolton, Mechatronics: Electronic Control Systems in Mechanical and Electrical Engineering, Person Education Limited, New Delhi 2007.

2. HMT, Mechatronics, Tata McGraw-Hill Publishing Company Ltd., New Delhi 2004.

3. K.P. Ramachandran, G.K. Vijayaraghavan, M.S. Balasundaram. Mechatronics: Integrated Mechanical Electronic Systems. Wiley India Pvt. Ltd., New Delhi 2008.

4. David G. Aldatore, Michael B. Histand, Introduction to Mechatronics and Measurement Systems, McGraw-Hill Inc., USA 2003.

5. Vijay K. Varadan, K. J. Vinoy, S. Gopalakrishnan, Smart Material Systems and MEMS: Design and Development Methodologies, John Wiley & Sons Ltd., England 2006.

6. Saeed B. Niku, Introduction to Robotics: Analysis, Systems, Applications, Person Education, Inc., New Delhi 2006.

7. Gordon M. Mair, Industrial Robotics, Prentice Hall International, UK 1998.

8. Devadas Shetty and Richard A Kolk, Mechatronics System Design, Cengage Learning India Pvt Ltd, Delhi, 2012.

	COURSE PLAN					
Module	Contents	Hours Allotted	% of Marks in End-Semester Examination			
Ι	Characteristics. Displacement and position sensors. Resolvers and synchros. Velocity and motion sensors	3				
	Principle and types of force, temperature, vibration and acoustic emission sensors.	2	15			
	ACTUATORS: Pneumatic, hydraulic and mechanical actuation systems used for Mechatronics devices	2				
II	AUTOMATION SYSTEM DESIGN: Design of fluid power circuits – cascade, KV-map and step counter method. PLC ladder logic diagram,	3				
	Programming of PLC, fringe condition modules, sizing of components in pneumatic and hydraulic systems. Analysis of hydraulic circuits.	3	15			
	FIRST INTERNAL EXAM					
III	Modeling And Simulation: Definition, key elements, mechatronics approach for design process, modeling of engineering systems, modeling system with spring, damper and mass.	4	15			
	Modeling chamber filled with fluid, modeling pneumatic actuator. Transfer functions, frequency response of systems, bode plot. software and hardware in loop simulation.	3				
IV	Microprocessors & Microcontrollers: Microprocessors - introduction, 8085 architecture, types of memory, machine cycles and timing diagram, addressing modes, instruction set, development of simple programs.	4	15			
	8051 microcontroller architecture, registers, addressing modes, interrupts, port structure, timer blocks and applications- stepper motor speed control.	2				
	SECOND INTERNAL EXAM					
v	Real Time Interfacing: Introduction to data acquisition and control systems, overview of I/O process.	4	20			
	Virtual instrumentation, interfacing of various sensors and actuators with PC, Condition monitoring, SCADA systems.	4				
VI	ROBOTIC VISION :Image acquisition: Vidicom and charge coupled device (CCD) cameras. Image processing techniques: histogram analysis, thresholding and connectivity method.	4	20			

	Case S	tudies Of Mechatronics Systems:	Pick and pla	ace robot, Aut	omatic		
	Bottle	filling unit, Automobile engine ma	anagement s	system.		4	
		END SEN	MESTER EX	AM			
Cours	e No.	Course Name	L-T-P	Credits	Year	Year of Introduction	
01MF	E7119	Computational Plasticity	3-0-0	3		2015	
At the e	Course Objectives At the end of this course, the students will						
-	-	t into the behavior of metals under	-	•			
		ise elementary theory of plasticity t		• •			
		naster the basic formulations and the			rming Pr	ocesses	,
		naster and apply the basic theory of usic knowledge about the cutting too		0	utting		
		and how they affect the cutting per	•		utting		
*		optimize metal cutting operations for		d criteria			
		· · ·	llabus				
mathen integrat	natical tl tion algo	f virtual work. Displacement - base neory of plasticity.Finite elements i rithm for the isotropically hardenin I - Further application: the von Mis	n small-strai ng vonMises ses model wi	n plasticity pro model. Nume th nonlinear n	oblems. rical exar	Applica nples w	tion:
		Expecte	d Outcom	e			
□□Pre based fi	edict the inite eler	pletion of the course, students will be changes in the mechanical behavior nent modeling. nd quantitatively determine elastopl	r of material		o-mecha	nical pro	ocessing
		Ref	erences:				
1.		de Souza Neto,DjordjePeric, David lications - 2008 John Wiley & Sons		mputational m	nethods fo	or plasti	icity : theory
2.		ndarajah, Computational Methods i	•	•	- 2010 Sp	pringer	
		in Wu, Continuum mechanics and p	•				
	 D R J Owen, E Hinton, Finite Elements in Plasticity Theory and Practice – 1980 Peneridge Press Ltd. 						
5.		ubliner, Plasticity theory – 2006					
		abarty, Theory of plasticity third ec					
7.		Rees, Basic engineering plasticity a ions - BH	n introductio	on with engine	ering and	l manufa	acturing
<u> </u>	applications - BH						

- 8. Modeling of Metal Forming and machining processes by fem Prakash M. Dixit, Uday S. Dixit
- 9. Introduction to Nonlinear Finite Element Analysis, , Nam-Ho Kim, Spinger

COURSE PLAN						
Module	Contents	Hours Allotted	% of Marks in End-Semester Examination			
I	Elements of continuum mechanics and thermodynamics – Kinematics of deformation - Infinitesimal deformations - Forces. Stress Measures -	4	15			
	Fundamental laws of thermodynamics - Constitutive theory - Weak equilibrium.	3				
п	The principle of virtual work - The quasi-static initial boundary value problem The finite element method in quasi-static nonlinear solid mechanics - Displacement - based finite elements - Path-dependent materials.	3	15			
	The incremental finite element procedure – Large strain formulation - Unstable equilibrium. The arc-length method	3				
	FIRST INTERNAL EXAM					
III	The mathematical theory of plasticity.	3	15			
	Overview of the program structure of FEM for plasticity	3				
IV	Phenomenological aspects - One-dimensional constitutive model	3	15			
	General elastoplastic constitutive model - Classical yield criteria – Plastic flow rules - Hardening laws	4				
	SECOND INTERNAL EXAM					
v	Finite elements in small-strain plasticity problems – Preliminary implementation aspects	4	20			
	General numerical integration algorithm for elastoplastic constitutive equations	4				
VI	Application: integration algorithm for the isotropically hardening vonMises model - The consistent tangent modulus	4	20			

Numerical examples with the vonMises model - Further application: the von Mises model with nonlinear mixed hardening	4			
END SEMESTER EXAM				

Course No.	Course Name	L-T-P	Credits	Year of Introduction
01ME7123	Mechanical Behavior Of Materials	3-0-0	3	2015

Course Objectives

The aim of the course is to provide information about the structure of crystalline materials, imperfections in crystals and its implications in the strength of materials, elastic and plastic behavior of crystalline materials to applied forces. In conjuction with the microstructural aspects of the plasticity a clear idea about the dislocation theory, strengthening mechanisms and fracture mechanics is attained. Basic information related to recovery, recrystallisation and grain growth and its influence on mechanical properties is also obtained. An understanding about the mechanical behavior of polymers, ceramics and composites is also achieved.

Syllabus

Structure and imperfections in crystals

Mechanical behaviour of metals

Strengthening mechanisms, recovery, recrystallisation and grain growth, Alloying

Fracture

Fatigue and creep

Mechanical behaviour of composites, polymers and ceramics. Advanced materials

Expected Outcome

At the end of the course the students will:

- Have a thorough understanding about the structure of crystalline solids and the various imperfections in it.
- Attain an in-depth understanding about dislocation theory and the various strengthening mechanisms.
- Achieve basic concepts of fracture mechanics and failure mechanisms like fatigue and creep.
- Gives information about the mechanical behavior of polymers, ceramics and composites.

Text Books :

1. MechancialBehaviour Materials by Marc Andre Meyers, K.K. Chawla, PHI

2. MechancialBehaviour Materials by Thomas H. Courtney, Waveland PrInc; 2 edition

Reference books :

- 1. Mechanical Metallurgy by GE Dieter; McGraw-Hill Book Co. Kogakusha Co. Ltd.
- 2. Fatigue of Metals by PG Forrest; Pergammon Press.
- 3. Material Science by Abdul Mubeen; Khanna Publishers

COURSE PLAN					
Module	Contents	Hours Allotted	% of Marks in End-Semester Examination		
Ι	Elements of crystal structure, Imperfections in crystals, dislocation motion and dislocation theory.	3			
	Slip in crystalline solids, Deformation twinning and kink bands, Grain boundaries and poly crystalline aggregates, Plasticity and the theoretical strength of materials.	3	15		
Π	States of stress and strain, Elasticity: origins, isotropic materials, anisotropic material.	3			
	Stress-strain curves; plasticity; empirical relations for stress and strain, criteria for necking, Yield Criteria, strength coefficient and strain hardening exponent, Effect of strain rate and temperature on tensile properties and torsion, Mechanical testing methods	4	15		
	FIRST INTERNAL EXAM				
ш	Strengthening mechanisms: solid solution, grain refinement, strain hardening, precipitation hardening, Recovery, recrystallisation and grain growth, Principles of Alloying - Solid solutions and intermediate phases - Gibbs phase rule and equilibrium diagram -	4			
	Types of binary phase diagrams ,Isomorphous - Eutectic -Peritectic and Peritectoid reactions, Iron-iron carbide equilibrium diagram, TTT diagram, martensitic transformation	3			
IV	Ceramics, polymers and composites. Advances and modern materials	2			
	Mechanical behavior of ceramics, Polymers and Composites.	3			
	SECOND INTERNAL EXAM				
v	Types of fractures - Ductile and brittle fractures - features of fracture - surface for ductile, brittle and mixed modes.	3	20		
ľ	The history of failure of engineering structures and parts, high strain rate, stress concentration and low temperature effects, impact tests and results, transition temperature and factors affecting transition temperature.	4	20		
VI	Stress cycle, fatigue curve, fatigue fracture characteristics. Fatigue testing and testing machines, determination of fatigue strength. Factors affecting fatigue- size, surface, stress concentration, Creep, Creep curve, Creep mechanisms,	4	20		
	Low temperature and high temperature creep theories, Fracture at elevated temperature. Stress rupture, Deformation mechanism maps, Material	5			

	ucture, Super plasticity END SEM	IESTER EX	XAM	
Course No.	Course Name	L-T-P	Credits	Year of Introduction
01ME7125	Computational Methods in Design and Manufacturing	3-0-0	3	2015
	Course	Objectives	5	
mechanical en fundamentals. Appreciation of nonlinear FEM Application of	f this course is to prepare the stude gineering manufacturing and desig The following are specific goals: f mechanical manufacturing as a c I and the related iterative analysis. different stress and strain tensor for and metal cutting processes.	gn through the second sec	he application earning proce	of engineering
		llabus		
	<u></u>			
	Elastoplasticity, viscoplasticity. Fi	nite elemen	t method – ge	eneral procedure, elements
and shape func Considerations	tion, stiffness matrix, isoparametr in Nonlinear Analysis,Linearizati te Element Equations in Static An	ic simulatio on and Dire alysis	ns, assembly a ctional deriva	and solutions Basic
and shape func Considerations	tion, stiffness matrix, isoparametr in Nonlinear Analysis,Linearizati te Element Equations in Static An	ic simulatio	ns, assembly a ctional deriva	and solutions Basic
and shape func Considerations Nonlinear Fini A basic und mechanical Detent Detent Design Design	tion, stiffness matrix, isoparametr in Nonlinear Analysis,Linearizati te Element Equations in Static An	ic simulatio on and Dire alysis d Outcome hine compor nent. as expect the e, and engine o meet desire problems.	ns, assembly a ectional deriva e nent design is a e students to ha eering.	and solutions Basic atives. Solution of the
and shape func Considerations Nonlinear Fini A basic und mechanical Detent Detent Design Design	tion, stiffness matrix, isoparametr in Nonlinear Analysis,Linearizati te Element Equations in Static An Expecte derstanding of the principles of mach engineers in an industrial environm ial employers and graduate program knowledge of mathematics, science a system, component, or process to by, formulate, and solve engineering	ic simulatio on and Dire alysis d Outcome hine compor- nent. as expect the e, and engine o meet desire problems.	ns, assembly a ectional deriva e nent design is a e students to ha eering.	and solutions Basic atives. Solution of the
A basic und mechanical Potent Potent Design Comm References: 1. Finite e 2. Modeli 3. An Intr 2005. 4. Nonline 5. Continu	tion, stiffness matrix, isoparametr in Nonlinear Analysis,Linearizati te Element Equations in Static An Expecte derstanding of the principles of mach engineers in an industrial environm ial employers and graduate program knowledge of mathematics, science a system, component, or process to by, formulate, and solve engineering	ic simulatio ion and Dire alysis d Outcome hine compor- nent. as expect the e, and engine problems. mselves. c g processes b nt Analysis, structures, 7 Chin Wu, Cl	ns, assembly a ectional derivate ent design is a students to hatering. ed needs. by fem - Prakas J.N Reddy, Oz Fed Belytschkor RC,2001.	and solutions Basic atives. Solution of the an essential requirement for ave an ability to: sh M. Dixit,Uday S. Dixit xford University Press, b, Wiley 2001.

7. Advanced Topics in Finite Element Analysis of Structures: With Mathematica and MATLAB

COURSE PLAN					
Module	Contents	Hours Allotted	% of Marks in End-Semester Examination		
Ι	Metal Forming and Machining Processes – Introduction to Metal Forming, Bulk Metal Forming, Sheet Metal Forming Processes, Machining, Turning, Milling etc.	3	15		
	Index Notation and Summation Convention, Stress, Stress at a Point, Analysis of Stress at a Point, Equation of Motion,	3			
II	Deformation, Linear Strain Tensor, Analysis of Strain at a Point,	4			
	Compatibility Conditions, Material Behavior, Elastic Stress-Strain Relations for Small Deformations,	3	15		
	FIRST INTERNAL EXAM				
III	Elastoplasticity – yield criteria, incremental and deformation plasticity, flow rule, viscoplasticity.	3	15		
	Finite element method – general procedure, elements and shape function, stiffness matrix, isoparametric simulations, assembly and solutions. Examples of applications in mechanical design.	3			
	Basic Considerations in Nonlinear Analysis, Lagrangian Continuum Mechanics Variables for General Nonlinear Analysis, Virtual work-	3			
IV	Linearization and Directional derivatives, Directional derivatives of different strain measures, Linearization of weak form in terms of second PiolaKirchoff stresses and	2	15		
	the Green Lagrange strains principle and variational methods, SECOND INTERNAL EXAM	2			
V	Nonlinear analysis – Total and Updated Lagrangian formulations,	4	2001/		
	geometric nonlinearity and material nonlinearity-formulations and procedures for static analysis.	4	20%		
	Solution of the Nonlinear Finite Element Equations in Static Analysis	4			
VI	Newton Raphson, Modified Newton Raphson, Secant method, Arc length method,	4	20%		
	END SEMESTER EXAM				

	No.	Course Name	L-T-P	Credits	Year of Introduction
01ME7	7127	Advanced Vehicle Dynamic	s 3-0-0	3	2015
Develop of vehicl		Cou ential knowledge aboutdynam	se Objectives		l modeling and simulation
Stability Vehicle I Dynamic	of Vel kinema c stabil amics a e dynan dynam	itics ity of vehicles and modeling nics iics			
		Expe	cted Outcome	2	
		edge of braking performance	and analysis of	automobiles.	
 Und □ □ At t condition Text Boo 1 	derstand the end ns and oks :	edge of tire mechanics and mod d how to control the vibration of the course, students will will be able to numerically me cle dynamics-Theory and app amentals of Vehicle Dynamic	of the vehicle. know the behav odel and analyze	em. vior of the ve e different sul a.N.Jazar – S	pringer-2008
 Und □ □ At t condition Text Boo 1 2 	derstand the end ns and oks : . Vehio 2. Fund	d how to control the vibration of the course, students will will be able to numerically me	of the vehicle. know the behaved odel and analyze ications - Rez s - Gillespie T.1	em. vior of the ve e different sul a.N.Jazar – S D, SAE USA	pringer-2008 1992.

COURSE PLAN						
Module	Contents	Hours Allotted	% of Marks in End-Semester Examination			
Ι	Introduction to dynamics Stability of Vehicles- load distribution weight transfer during acceleration and braking, optimum braking, wheel locking and vehicle skidding, antilock braking system.	4	15			
	Over steer, under steer, steady state cornering. Effect of braking, driving torques on steering. Effect of camber, transient effects in cornering. Directional stability of vehicles.	3				
II	Vehicle kinematics Coordinate transformations, Euler angles, time derivative and coordinate frames, rigid body dynamics.	3				
	Dynamic stability of vehicles -Vehicle planar dynamics Longitudinal vehicle dynamics-Lateral vehicle dynamics -Vehicle roll dynamics	3	15			
	FIRST INTERNAL EXAM					
III	Tire dynamics and modeling -Tire and rim fundamentals, Tire components, Tire coordinate frame and tire force systems, Tire Stiffness-linear and non linear tire stiffness, hysteresis effect, Static tire stresses Effective radius Rolling resistance.	3				
	Effect of speed on rolling resistance Effect of inflation pressure, load camber angle and side slip angle on rolling resistance, Forces on the tire- linear force, lateral force and camber force, Stresses and deformation of a rolling tire Mathematical model of rolling tire- damping structure and spring Structure.	4				
IV	Driveline dynamics- Basic engine dynamics - power, speed and torque Characteristics.	4				
	Driveline components -Gear box and clutch dynamics, gear box design	2				
	SECOND INTERNAL EXAM					
V	VSteering dynamics-Analysis of steering mechanisms, Steering of multi- axle vehicles, vehicles with trailer.Four wheel steering, optimization of steering mechanisms, Suspension		20			
	mechanisms- Suspension optimization	3				
VI	Vehicle vibrations Fundamentals of vibrations- single degree freedom and multi degree freedom vibrations.	4	20			
	Passenger comfort and vibrations Numerical modelling of vehicle vibrations-Quarter car model Half car model, full car model	5				

END SEMESTER EXAM						
Course No.	Course Name	L-T-P	Credits	Year of Introduct	ion	
01ME7129	Control System	3-0-0	3	2015		
	Cour	se Objectiv	res			
2 To introduce of systems	the elements of control system e methods for analyzing the tin the state variable analysis me	me response				
Time response Frequency Res Compensators	of Control System Transfer analysis P, PI, PD and PID Co ponse- Nichol's Chart - Analysis using MATLAB.	mpensation	n, Analysis us	ing MATLAB		
•	n-Hurwitz Criterion, Root Locu resentation of Continuous Tim able	-	•	•	on	
State space representation for Discrete time systems. Sampled Data control systems – Sampling Theorem						
	Expec	cted Outcor	ne			
1 Perform stability	time domain and frequency	y domain a	analysis of co	ontrol systems requi	red fo	

COURSE PLAN							
Module	Contents	Hours Allotted	% of Marks in End-Semester Examination				
I	Basic Elements of Control System – Open loop and Closed loop systems - Differential equation - Transfer function,	5	15				
	Translational and rotational mechanical systems - Block diagram reduction Techniques - Signal flow graphMason's gain formula - characteristics equation	4					
II	Time response analysis - First Order Systems - Impulse and Step Response analysis of second order systems - Steady state errors – P, PI, PD and PID Compensation, Analysis using MATLAB	6	15				
	FIRST INTERNAL EXAM						
III	Frequency Response - Bode Plot, Polar Plot, Nyquist Plot - Frequency Domain specifications from the plots - Constant M and N Circles –.	5	15				
	Nichol's Chart - Use of Nichol's Chart in Control System Analysis. Series, Parallel, series-parallel Compensators - Lead, Lag, and Lead Lag Compensators, Analysis using MATLAB	4					
IV	Stability, Routh-Hurwitz Criterion, Root Locus Technique, Construction of Root Locus, Stability, Dominant Poles,	4	15				
1	Application of Root Locus Diagram - Nyquist Stability Criterion - Relative Stability, Analysis using MATLAB		. 10				
	SECOND INTERNAL EXAM						
v	State space representation of Continuous Time systems – State equations		20				
	Transfer function from State Variable Representation – Solutions of the state equations	3					
VI	Concepts of Controllability and Observability – State space representation for Discrete time systems.	4					
VI	Sampled Data control systems – Sampling Theorem – Sampler & Hold – Open loop & Closed loop sampled data systems	2	20				
	END SEMESTER EXAM						

Course No.	Course Name	L-T-P	Credits	Year of Introduction
01ME7191	SEMINAR II	0-0-2	2	2015

Course Objectives

To make students

- 1. Identify the current topics in the specific stream.
- 2. Collect the recent publications related to the identified topics.
- 3. Do a detailed study of a selected topic based on current journals, published papers and books.
- 4. Present a seminar on the selected topic on which a detailed study has been done.
- 5. Improve the writing and presentation skills.

Approach

Students shall make a presentation for 20-25 minutes based on the detailed study of the topic and submit a report based on the study.

Expected Outcome

Upon successful completion of the seminar, the student should be able to

- 1. Get good exposure in the current topics in the specific stream.
- **2.** Improve the writing and presentation skills.
- 3. Explore domains of interest so as to pursue the course project.
- 4. Able to assimilate the ideas presented in the latest journal papers

Course No.	Course Name	L-T-P	Credits	Year of Introduction		
01ME7193	PROJECT (PHASE 1)	0-0-12	6	2015		
	Course	Ohiodinoo				
To make stu		Objectives				
1. Do an	original and independent study	y on the are	ea of speciali	ization.		
-	e in depth a subject of his/her o					
	e preliminary background stud		ls the projec	t by conducting		
	re survey in the relevant field.					
	y identify the area of the projec		niliarize wit	h the tools required for		
	sign and analysis of the project.		for musicate			
5. Plan th	e experimental platform, if any	Approach	for project v	VORK.		
		rppioacii				
The stu	ident has to present two semin	nars and su	ıbmit an int	erim Project report. The		
first seminar would highlight the topic, objectives, methodology and expected results.						
The first seminar shall be conducted in the first half of this semester. The second						
seminar is the presentation of the interim project report of the work completed and						
scope of the work which has to be accomplished in the fourth semester.						
Expected Outcome						
Upon successful completion of the project phase 1, the student should be able to						
-	fy the topic, objectives and met					
2. Finalize the project plan for their course project.						

SEMESTER - IV

Syllabus and Course Plan

Course No.	Course Name	L-T-P	Credits	Year of Introduction			
01ME7194	PROJECT (PHASE II)	0-0-23	12	2015			
	Course Objectives						
To con	tinue and complete the project	work iden	tified in proj	ect phase 1.			
		Approach					
There shall be two seminars (a mid term evaluation on the progress of the work and pre submission seminar to assess the quality and quantum of the work). At least one technical paper has to be prepared for possible publication in journals / conferences based on their project work. Expected Outcome							
Upon successful completion of the project phase II, the student should be able to1. Get a good exposure to a domain of interest.2. Get a good domain and experience to pursue future research activities.							